Was ist Genetik?

  • Chapter
  • First Online:
Genetik
  • 17k Accesses

Zusammenfassung

Vergleicht man verschiedene Organismen miteinander, lassen sich zwei wichtige biologische Eigenschaften erkennen: Einerseits unterscheiden sich Organismen in ihrer Gestalt so deutlich voneinander, dass sie in verschiedene systematische Gruppen eingeteilt werden. Die wesentlichen Unterschiede zwischen diesen Gruppen sind offensichtlich erblich festgelegt, da sie sich mehr oder weniger unverändert auf die folgenden Generationen übertragen. Andererseits unterscheiden sich aber auch die einzelnen Individuen innerhalb einer Organismengruppe voneinander. Diese Unterschiede reflektieren kleinere Variationen in der genetischen Gesamtausstattung und entsprechend unterschiedliche Antworten auf Umweltreize. Die Frage nach der individuellen Variabilität lässt sich experimentell überprüfen und ist die Grundlage genetischer Forschung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Alonso-Blanco C, Mendez-Vigo B, Koornneef M (2005) From phenotypic to molecular polymorphisms involved in naturally occurring variation of plant development. Int J Dev Biol 49:717–732

    CAS  PubMed  Google Scholar 

  • Avery OT, MacLeod CM, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a deoxyribonucleic acid fraction isolated from Pneumococcus type III. J Exp Med 79:137–158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baltimore T (1970) Viral RNA-dependent DNA polymerase. Nature 226:1209–1211

    CAS  PubMed  Google Scholar 

  • Barton JH (2006) Emerging patent issues in genomic diagnostics. Nat Biotechnol 24:939–941

    CAS  PubMed  Google Scholar 

  • Baur F, Fischer E, Lenz F (1921) Grundriß der menschlichen Erblichkeitslehre und Rassenhygiene. J. F. Lehmanns, München

    Google Scholar 

  • Berg P, Baltimore D, Brenner S et al (1975) Asilomar Conference on recombinant DNA molecules. Science 188:991–994

    CAS  PubMed  Google Scholar 

  • Boveri T (1904) Ergebnisse über die Konstitution der chromatischen Substanz des Zellkerns. Gustav Fischer, Jena

    Google Scholar 

  • Brink RA (1956) A genetic change associated with the R locus in maize which is directed and potentially reversible. Genetics 41:872–879

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chandler VL (2007) Paramutation: from maize to mice. Cell 128:641–645

    CAS  PubMed  Google Scholar 

  • Clausen J, Keck DD, Hiesey WM (1940) Experimental studies on the nature of species. I. Effect of varied environments on western North American plants. Carnegie Institution of Washington Publication No. 520. Washington DC, (Neuaufl. 1971)

    Google Scholar 

  • Clausen J, Keck DD, Hiesey WM (1948) Experimental studies on the nature of species. III. Environmental responses of climatic races of Achillea. Carnegie Institution of Washington Publication No. 581, Washington DC (3. Aufl. 1972)

    Google Scholar 

  • Cohen SN, Chang ACY, Boyer HW et al (1973) Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci USA 70:3240–3244

    CAS  PubMed  Google Scholar 

  • Correns C (1900) G. Mendel’s Regel über das Verhalten der Nachkommenschaft der Rassenbastarde. Ber Dt Bot Ges 18:158–168

    Google Scholar 

  • Darwin C (1859) On the Origin of Species by Means of Natural Selection. John Murray,, London

    Google Scholar 

  • De Vries H (1900) Das Spaltungsgesetz der Bastarde. Vorläufige Mitteilung. Ber Dt Bot Ges 18:83–90

    Google Scholar 

  • Dronamraju KR, Francomano CA (2012) Victor mcKusick and the history of medical genetics. Springer, New York

    Google Scholar 

  • Galton F (1883) Inquiries into human faculty and its development. MacMillan, London

    Google Scholar 

  • Gibson DG, Glass JI, Lartigue C et al (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329:52–56

    CAS  PubMed  Google Scholar 

  • Gregory TR (2005) Synergy between sequence and size in large-scale genomics. Nat Rev Genet 6:699–708

    CAS  PubMed  Google Scholar 

  • Hagemann R (2002) How did East German genetics avoid Lysenkoism? Trends Genet 18:320–324

    CAS  PubMed  Google Scholar 

  • Hardy GH (1908) Mendelian proportions in mixed populations. Science 28:49–50

    CAS  PubMed  Google Scholar 

  • Haynes RH (1998) Heritable variation and mutagenesis at early International Congresses of Genetics. Genetics 148:1419–1431

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hilscher W (1999) Some remarks on the female and male Keimbahn in the light of evolution and history. J Exp Zool 285:197–214

    CAS  PubMed  Google Scholar 

  • Hindré T, Knibbe C, Beslon G et al (2012) New insights into bacterial adaptation through in vivo and in silico experimental evolution. Nat Rev Microbiol 10:352–365

    PubMed  Google Scholar 

  • Hoßfeld U (2014) Institute, Geld, Intrigen: Rassenwahn in Thüringen, 1930 bis 1945. Landeszentrale für politische Bildung Thüringen, Erfurt

    Google Scholar 

  • International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Google Scholar 

  • International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945

    Google Scholar 

  • **ek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johannsen W (1909) Elemente der exakten Erblichkeitslehre. Gustav Fischer, Jena

    Google Scholar 

  • Knippers R (2012) Eine kurze Geschichte der Genetik. Springer, Berlin

    Google Scholar 

  • Kossel A (1891) Ueber die chemische Zusammensetzung der Zelle. Arch Physiol:181–186

    Google Scholar 

  • Kutschera U (2009) Charles Darwin’s Origin of Species, directional selection, and the evolutionary sciences today. Naturwissenschaften 96:1247–1263

    CAS  PubMed  Google Scholar 

  • Lamarck JB (1809) Philosophie zoologique. Dentu, Paris (2 Bände)

    Google Scholar 

  • Levin M (2009) Model-based global analysis of heterogeneous experimental data using gfit. In: Maly V (Hrsg) Methods in molecular biology. Humana Press, New York, S 335–359

    Google Scholar 

  • Mahner M, Bunge M (2000) Philosophische Grundlagen der Biologie. Springer, Berlin

    Google Scholar 

  • Martin RG, Matthaei JH, Jones OW, Nirenberg MW (1962) Ribonucleotide composition of the genetic code. Biochem Biophys Res Commun 6:410–414

    CAS  PubMed  Google Scholar 

  • Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci USA 74:560–564

    CAS  PubMed  Google Scholar 

  • Mendel G (1866) Versuche über Pflanzen-Hybriden. Verhandlungen des naturforschenden Vereines, Bd. IV, Brünn

    Google Scholar 

  • Meselson M, Stahl FW (1958) The replication of DNA in Escherichia coli. Proc Natl Acad Sci USA 44:671–682

    CAS  PubMed  Google Scholar 

  • Miescher F (1871) Über die chemische Zusammensetzung der Eiterzellen. Med Chem Unters 4:441–460

    Google Scholar 

  • Morgan TH (1910) Sex linked inheritance in Drosophila. Science 32:120–122

    CAS  PubMed  Google Scholar 

  • Muller HJ (1930) Radiation and genetics. Am Nat 64:220–251

    Google Scholar 

  • Mullis K, Faloona F, Scharf S et al (1986) Specific enzymatic amplification of DNA in vitro. The polymerase chain reaction. Cold Spring Harbour Symp Quant Biol 51:163–273

    Google Scholar 

  • Novembre J, Han E (2012) Human population structure and the adaptive response to pathogen-induced selection pressures. Philos Trans R Soc Lond B Biol Sci 367:878–886

    PubMed  PubMed Central  Google Scholar 

  • Reilly PR (2015) Eugenics and involuntary sterilization: 1907–2015. Annu Rev Genomics Hum Genet 16:351–368

    CAS  PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating methods. Proc Natl Acad Sci USA 74:5463–5467

    CAS  PubMed  Google Scholar 

  • Simunek M, Hoßfeld U, Thümmler F et al (2011) The Mendelian Dioskuri – Correspondence of Armin with Erich von Tschermak-Seysenegg, 1898–1951. Institute of Contempory History of the Academy of Sciences, Prag

    Google Scholar 

  • Soyfer VN (2001) The consequences of political dictatorship for Russian science. Nat Rev Genet 2:723–729

    CAS  PubMed  Google Scholar 

  • Storch V, Welsch U, Wink M (2007) Evolutionsbiologie, 2. Aufl. Springer, Berlin

    Google Scholar 

  • Sutton WS (1903) The chromosomes in heredity. Biol Bull 4:213–251

    Google Scholar 

  • Tschermak E (1900) Über künstliche Kreuzung bei Pisum sativum. Ber Dt Bot Ges 18:232–239

    Google Scholar 

  • Vavilov NJ (1928) Geographische Genzentren unserer Kulturpflanzen. Z Indukt Abstam Vererbl Suppl 1:342–369

    Google Scholar 

  • Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351

    CAS  PubMed  Google Scholar 

  • Waddington CH (1940) Organisers and genes. Cambridge University Press, Cambridge

    Google Scholar 

  • Waldeyer W (1888) Über Karyogenese und ihre Beziehungen zu den Befruchtungsvorgängen. Arch Mikrosk Anat 32:1–122

    Google Scholar 

  • Watson JD, Crick FHC (1953) Molecular structure of nucleic acids. A structure for deoxyribose nucleic acid. Nature 171:737–738

    CAS  PubMed  Google Scholar 

  • Weinberg W (1908) Über den Nachweis der Vererbung beim Menschen. Jahreshefte Ver Vaterl Naturk Württemb 64:369–382

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Graw .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Graw, J. (2020). Was ist Genetik?. In: Genetik. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-60909-5_1

Download citation

Publish with us

Policies and ethics

Navigation