Neuronal Networks Simulate Brains

  • Chapter
  • First Online:
Artificial intelligence - When do machines take over?

Part of the book series: Technik im Fokus ((TECHNIK))

  • 2055 Accesses

Abstract

Brains are examples of complex information systems based on neuronal information processing. What distinguishes them from other information systems is their ability to cognition, emotion and consciousness. The term cognition (lat. cognoscere for “to recognize”, “to perceive”, “to know”) is used to describe abilities such as perception, learning, thinking, memory and language. Which synaptic signal processing processes underlie these processes? Which neuronal subsystems are involved?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
EUR 24.60
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 32.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mainzer K (1997) Gehirn, Computer, Komplexität. Springer, Berlin

    Book  Google Scholar 

  2. Roth G (1994) Das Gehirn und seine Wirklichkeit. Kognitive Neuropsychologie und ihre philosophischen Konsequenzen. Suhrkamp, Frankfurt

    Google Scholar 

  3. Markowitsch HJ (1992) Neuropsychologie des Gedächtnisses. Verlag für Psychologie, Göttingen

    Google Scholar 

  4. Hebb DO (1949) The organisation of behavior. A neurophysiological theory. Wiley, New York

    Google Scholar 

  5. McCulloch WS, Pitts WH (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophysics 5:115–133

    Article  Google Scholar 

  6. Rosenblatt F (1958) The perceptron: A probabilistic model for information storage and organization in the brain. Psychol Rev 65:386–408

    Article  Google Scholar 

  7. Minsky M, Papert S (1969) Perceptrons, expanded edition. An introduction to computational geometry by Marvin Minsky and Seymour A. Papert. MIT Press, Cambridge

    Google Scholar 

  8. Möller K, Paaß G (1994) Künstliche neuronale Netze: eine Bestandsaufnahme. KI—Künstliche Intelligenz 4:37–61

    Google Scholar 

  9. Rummelhart DE, Hinton GE, Williams RJ (1986) Learning representation by back-propagating errors. Nature 323:533–536

    Article  Google Scholar 

  10. Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators neural networks. Neural Networks 2:359–366

    Article  Google Scholar 

  11. Dean J (2014) Big data, data mining, and machine learning. Value creation for business leaders and practitioneers. Wiley, Hoboken

    Book  Google Scholar 

  12. Jones N (2014) The learning machines. Nature 502:146–148

    Article  Google Scholar 

  13. Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci 79:2554–2558

    Article  Google Scholar 

  14. Tank DW, Hopfield JJ (1991) Kollektives Rechnen mit neuronenähnlichne Schaltkreisen. Spektrum der Wissenschaft Sonderheft 11:65

    Google Scholar 

  15. Serra R, Zanarini G (1990) Complex systems and cognitive processes. Springer, Berlin, p 78

    Book  Google Scholar 

  16. Hinton GE, Anderson JA (1981) Parallel models of associative memory. Psychology Press, Hillsdale N.J.

    Google Scholar 

  17. Ritter H, Martinetz T, Schulten K (1991) Neuronale Netze. Addison-Wesley, Bonn

    Google Scholar 

  18. von der Malsburg C (1973) Self-organization of orientation. Sensitive cells in the striate cortex. Kybernetik 14:85–100

    Article  Google Scholar 

  19. Kohonen T (1991) Self-organizing maps. Springer, Berlin

    Google Scholar 

  20. Sutton R, Barto A (1998) Reinforcement-learning: an introduction. A Bradford Book, Cambridge

    Google Scholar 

  21. Russell S, Norvig P (2004) Künstliche Intelligenz: Ein moderner Ansatz. Pearson Studium, München

    Google Scholar 

  22. Pearl J (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference, 2nd edn. Morgan Kaufmann, San Francisco

    Google Scholar 

  23. Tversky A, Kahneman D (2000) Advances in prospect theory: cumulative representation of uncertainty. In: Kahneman D, Tversky A (eds) Choices, values and frames. Cambridge University Press, Cambridge, pp 44–66

    Chapter  Google Scholar 

  24. Damasio AR (1995) Descartes’ Irrtum. Fühlen, Denken und das menschliche Gehirn. List, München

    Google Scholar 

  25. Picard RW (1997) Affective computing. MIT Press, Cambridge

    Google Scholar 

  26. Onisawa T (2000) Soft computing technology in Kansei (emotional) information processing. In: Liu Z-Q, Miyamoto S (eds) Soft computing and human-centered machines. Springer, Berlin

    Google Scholar 

  27. Velasquez JD (1997) Modeling emotions and other motivations in synthetic agents. Amer Assoc Art Int, pp 10–15

    Google Scholar 

  28. Flohr H (1991) Brain processes and phenomenal consciousness. A new and specific hypothesis. Theory and Psychology 1:245–262

    Article  Google Scholar 

  29. Mainzer K (2008) Organic computing and complex dynamical systems. Conceptual foundations and interdisciplinary perspectives. In: Würtz RP (ed) Organic computing. Springer, Berlin, pp 105–122

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Mainzer .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mainzer, K. (2020). Neuronal Networks Simulate Brains. In: Artificial intelligence - When do machines take over?. Technik im Fokus. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59717-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-59717-0_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-59716-3

  • Online ISBN: 978-3-662-59717-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation