Co-expression of Cellulases in the Chloroplasts of Nicotiana tabacum

  • Conference paper
  • First Online:
Fuels From Biomass: An Interdisciplinary Approach (BrenaRo 2011)

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 129))

Included in the following conference series:

  • 999 Accesses

Abstract

Due to the increasing demand for alternative energy carriers, biomass is in the focus of research and industry as raw material for fuels and base chemicals. This has led to an increased use of feedstock for biofuel production and to conflict between using this feedstock for either food or for fuel generation. To avoid this problem, lignocellulose is seen as a promising raw material, as it is not used for food or feed production and harbors high amounts of sugars in form of cellulose and hemicellulose. Currently, the enzymes used for cellulose degradation are mainly produced directly in their natural hosts (e.g. Trichoderma reesei) or in genetically altered microorganisms. The high costs for the production of these enzymes make them a major obstacle for the economically feasible use of lignocellulose as a renewable raw material. As an alternative production platform, plants could be used to express these enzymes cheaply and directly in the raw material to be used for conversion. To alleviate the skepticism towards genetically altered plants, especially prevalent in Germany and Europe, chloroplast transformation offers the opportunity to combine efficient production of a set of cellulases within a single plant, while reducing the risk of releasing altered genetic information into the environment. This approach is used in this project to express seven cellulolytic enzymes, derived from the bacterium Thermobifida fusca, in the chloroplasts of Nicotiana tabacum and to analyze their activity on cellulosic substrates as well as their influence on plant growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, A.P.: Molecular biology of the cell, 4th edn. Garland Science, NY (2002). http://www.ncbi.nlm.nih.gov/books/NBK21054/

  2. Anbar, M., Lamed, R., Bayer, E.A.: Thermostability enhancement of Clostridium thermocellum cellulosomal endoglucanase Cel8A by a single glycine substitution. ChemCatChem 2(8), 997–1003 (2010)

    Article  Google Scholar 

  3. Barr, B.K., Hsieh, Y.-L., Ganem, B., Wilson, D.B.: Identification of two functionally different classes of exocellulases. Biochemistry 35(2), 586–592 (1996)

    Article  Google Scholar 

  4. Bundesministerium für Bildung und Forschung, BMBF. National research strategy bioeconomy 2030 (2011) http://www.bmbf.de/pub/bioeconomy_2030.pdf

  5. Bundesministerium für Bildung und Forschung, BMBF. Funding success: Biofuel made from straw (2012). http://www.bmbf.de/en/17786.php?hilite=bioenergy

  6. Bock, R., Timmis, J.N.: Reconstructing evolution: Gene transfer from plastids to the nucleus. BioEssays 30(6), 556–566 (2008)

    Article  Google Scholar 

  7. Boynton, J.E., Gillham, N.W., Harris, E.H., Hosler, J.P., Johnson, A.M., Jones, A.R., Randolph-Anderson, B.L., Robertson, D., Klein, T.M., Shark, K.B., Sanford, J.C.: Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240(4858), 1534–1538 (1988)

    Article  Google Scholar 

  8. Caplan, A., Herrera-Estrella, L., Inzé, D., Van Haute, E., Van Montagu, M., Schell, J., Zambryski, P.: Introduction of genetic material into plant cells. Science 222(4625), 815–821 (1983)

    Article  Google Scholar 

  9. Carroll, A., Somerville, C.: Cellulosic biofuels. Annu. Rev. Plant Biol. 60(1), 165–182 (2009)

    Article  Google Scholar 

  10. Congress of the United States of America (2207) Energy independence and security act of 2007. Pub. L. No. 110–140, 121 Stat. 1492, 1783–1784 (2007, December 19) (codified at 42 U.S.C. §17381)

    Google Scholar 

  11. Daniell, H.: Transgene containment by maternal inheritance: Effective or elusive? Proc Natl Acad Sci USA 104(17), 6879–6880 (2007)

    Article  Google Scholar 

  12. Daniell, H., Khan, M.S., Allison, L.: Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant Sci. 7(2), 84–91 (2002)

    Article  Google Scholar 

  13. Desai, P.N., Shrivastava, N., Padh, H.: Production of heterologous proteins in plants: strategies for optimal expression. Biotech. Adv. 28(4), 427–435 (2010)

    Article  Google Scholar 

  14. Domingo, J.L.: Health risks of GM foods: many opinions but few data. Science 288(5472), 1748–1749 (2000)

    Article  Google Scholar 

  15. European Comission (2009) Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing directives 2001/77/EC and 2003/30/EC

    Google Scholar 

  16. Egelkrout, E., McGaughey, K., Keener, T., Ferleman, A., Woodard, S., Devaiah, S., Nikolov, Z., Hood, E., Howard, J.: Enhanced expression levels of cellulase enzymes using multiple transcription units. Bioenerg. Res. 6(2), 1–12 (2012)

    Google Scholar 

  17. Garvey, M., Klose, H., Fischer, R., Lambertz, C., Commandeur, U.: Cellulases for biomass degradation: comparing recombinant cellulase expression platforms. Trends Biotechnol. 31(10), 581–593 (2013)

    Article  Google Scholar 

  18. Goldemberg, J., Guardabassi, P.: Are biofuels a feasible option? Energy Policy 37(1), 10–14 (2009)

    Article  Google Scholar 

  19. Goldstein, I.S.: Organic Chemicals from Biomass. CRC Press, Inc. FL (1981) 310 pp

    Google Scholar 

  20. Gomez del Pulgar, E.M., Saadeddin, A.: The cellulolytic system of Thermobifida fusca. Crit. Rev. Microbiol. 40(3), 236–247 (2014)

    Article  Google Scholar 

  21. Gray, B., Yang, H., Ahner, B., Hanson, M.: An efficient downstream box fusion allows high-level accumulation of active bacterial beta-glucosidase in tobacco chloroplasts. Plant Mol. Biol. 76(3–5), 1–11 (2011)

    Google Scholar 

  22. Gray, B., Ahner, B.A., Hanson, M.: High-level bacterial cellulase accumulation in chloroplast-transformed tobacco mediated by downstream box fusions. Biotechnol. Bioeng. 102(4), 1045–1054 (2009)

    Article  Google Scholar 

  23. Gusakov, A.V., Sinitsyn, A.P.: A theoretical analysis of cellulase product inhibition: Effect of cellulase binding constant, enzyme/substrate ratio, and β-glucosidase activity on the inhibition pattern. Biotech. Bioeng. 40(6), 663–671 (1992)

    Article  Google Scholar 

  24. Gusakov, A.V.: Alternatives to Trichoderma reesei in biofuel production. Trends Biotechnol. 29(9), 419–425 (2011)

    Article  Google Scholar 

  25. Hamilton, J. D.: Causes and consequences of the oil shock of 2007-08. Natl. Bur. Econ. Res. Working Pap. Ser. 40, 215–283 (2009)

    Google Scholar 

  26. Hendriks, A.T.W.M., Zeeman, G.: Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100(1), 10–18 (2009)

    Article  Google Scholar 

  27. Henry, R.J.: Evaluation of plant biomass resources available for replacement of fossil oil. Plant Biotechnol. J. 8(3), 288–293 (2010)

    Article  MathSciNet  Google Scholar 

  28. Himmel, M.E., Ding, S.-Y., Johnson, D.K., Adney, W.S., Nimlos, M.R., Brady, J.W., Foust, T.D.: Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813), 804–807 (2007)

    Article  Google Scholar 

  29. Holtzapple, M.T., Caram, H.S., Humphrey, A.E.: Determining the inhibition constants in the HCH-1 model of cellulose hydrolysis. Biotech. Bioeng. 26(7), 753–757 (1984)

    Article  Google Scholar 

  30. Horsch, R., Fry, J., Hoffmann, N., Eichholtz, D., Rogers, S.A., Fraley, R.: A simple and general method for transferring genes into plants. Science 227, 1229–1231 (1985)

    Article  Google Scholar 

  31. Irwin, D.C., Zhang, S., Wilson, D.B.: Cloning, expression and characterization of a family 48 exocellulase, Cel48A, from Thermobifida fusca. Eur. J. Biochem. 267(16), 4988–4997 (2000)

    Article  Google Scholar 

  32. Ishida, Y., Hiei, Y., Komari, T.: Agrobacterium-mediated transformation of maize. Natl. Protoc. 2(7), 1614–1621 (2007)

    Article  Google Scholar 

  33. Jaeger, G., Girfoglio, M., Dollo, F., Rinaldi, R., Bongard, H., Commandeur, U., Fischer, R., Spiess, A.C., Buechs, J.: How recombinant swollenin from Kluyveromyces lactis affects cellulosic substrates and accelerates their hydrolysis. Biotechnol. Biofuels 4(1), 33 (2011)

    Article  Google Scholar 

  34. Jordan, D.B., Bowman, M.J., Braker, J.D., Dien, B.S., Hector, R.E., Lee, C.C., Mertens, J.A., Wagschal, K.: Plant cell walls to ethanol. Biochem. J. 442, 241–252 (2012)

    Article  Google Scholar 

  35. Jørgensen, H., Kristensen, J.B., Felby, C.: Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod. Bioref. 1(2), 119–134 (2007)

    Article  Google Scholar 

  36. Klose, H., Gunl, M., Usadel, B., Fischer, R., Commandeur, U.: Ethanol inducible expression of a mesophilic cellulase avoids adverse effects on plant development. Biotechnol. Biofuels 6(1), 53 (2013)

    Article  Google Scholar 

  37. Klose, H., Röder, J., Girfoglio, M., Fischer, R., Commandeur, U.: Hyperthermophilic endoglucanase for in planta lignocellulose conversion. Biotechnol. Biofuels 5, 63 (2012)

    Article  Google Scholar 

  38. Krichevsky, A., Meyers, B., Vainstein, A., Maliga, P., Citovsky, V.: Autoluminescent plants. PLoS ONE 5(11), e15461 (2010)

    Article  Google Scholar 

  39. Lombard, V., Golaconda, R.H., Drula, E., Coutinho, P.M., Henrissat, B.: The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 (2014)

    Article  Google Scholar 

  40. Lutz, K., Azhagiri, A., Maliga, P.: “Transplastomics in Arabidopsis: Progress toward develo** an efficient method.” Chloroplast Research in Arabidopsis. R. P. Jarvis. Humana Press. NY 774, 133–147 (2011)

    Google Scholar 

  41. Lutzen, N.W., Nielsen, M.H., Oxenboell, K.M., Schulein, M., Stentebjerg-Olesen, B.: Cellulases and their application in the conversion of lignocellulose to fermentable sugars. Philos. Trans. R. Soc. Lond. B Biol. Sci. 300(1100), 283–291 (1983)

    Article  Google Scholar 

  42. Lynd, L.R., Weimer, P.J., van Zyl, W.H., Pretorius, I.S.: Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol R 66(3), 506–577 (2002)

    Article  Google Scholar 

  43. Maliga, P.: Engineering the plastid genome of higher plants. Curr. Opin. Plant Biol. 5(2), 164–172 (2002)

    Article  Google Scholar 

  44. Maliga, P.: Plastid transformation in higher plants. Annu. Rev. Plant Biol. 55(1), 289–313 (2004)

    Article  Google Scholar 

  45. Petersen, K., Bock, R.: High-level expression of a suite of thermostable cell wall-degrading enzymes from the chloroplast genome. Plant Mol. Biol. 76(3), 311–321 (2011)

    Article  Google Scholar 

  46. Quesada-Vargas, T., Ruiz, O.N., Daniell, H.: Characterization of heterologous multigene operons in transgenic chloroplasts. Transcription, processing, and translation. Plant Physiol. 138(3), 1746–1762 (2005)

    Article  Google Scholar 

  47. Ruf, S., Hermann, M., Berger, I.J., Carrer, H., Bock, R.: Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Natl. Biotech. 19(9), 870–875 (2001)

    Article  Google Scholar 

  48. Runge, C.F., Senauer, B.: How biofuels could starve the poor. Foreign affairs 86(3), 41–53 (2007)

    Google Scholar 

  49. Sainz, M.: Commercial cellulosic ethanol: The role of plant-expressed enzymes. In Vitro Cell Dev Biol: Plant 45(3), 314–329 (2009)

    Article  Google Scholar 

  50. Sakon, J., Irwin, D., Wilson, D.B., Karplus, P.A.: Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca. Natl. Struct. Mol. Biol. 4(10), 810–818 (1997)

    Article  Google Scholar 

  51. Searchinger, T., Heimlich, R., Houghton, R.A., Dong, F., Elobeid, A., Fabiosa, J., Tokgoz, S., Hayes, D., Yu, T.-H.: Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867), 1238–1240 (2008)

    Article  Google Scholar 

  52. Sharma, A.K., Sharma, M.K.: Plants as bioreactors: Recent developments and emerging opportunities. Biotechnol. Adv. 27(6), 811–832 (2009)

    Article  Google Scholar 

  53. Shaver, J., Oldenburg, D., Bendich, A.: Changes in chloroplast DNA during development in tobacco, Medicago truncatula, pea, and maize. Planta 224(1), 72–82 (2006)

    Article  Google Scholar 

  54. Somerville, C.: Cellulose synthesis in higher plants. Annu. Rev. Cell Dev. Biol. 22(1), 53–78 (2006)

    Article  Google Scholar 

  55. Spiridonov, N.A., Wilson, D.B.: Cloning and biochemical characterization of BglC, a β-glucosidase from the cellulolytic actinomycete Thermobifida fusca. Curr. Microbiol. 42(4), 295–301 (2001)

    Google Scholar 

  56. Sun, Y., Cheng, J.J., Himmel, M.E., Skory, C.D., Adney, W.S., Thomas, S.R., Tisserat, B., Nishimura, Y., Yamamoto, Y.T.: Expression and characterization of Acidothermus cellulolyticus E1 endoglucanase in transgenic duckweed Lemna minor 8627. Bioresour. Technol. 98(15), 2866–2872 (2007)

    Article  Google Scholar 

  57. Svab, Z., Hajdukiewicz, P., Maliga, P.: Stable transformation of plastids in higher plants. Proc. Natl. Acad. Sci. USA 87(21), 8526–8530 (1990)

    Article  Google Scholar 

  58. Svab, Z., Maliga, P.: High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc. Natl. Acad. Sci. USA 90(3), 913–917 (1993)

    Article  Google Scholar 

  59. Taylor II, L.E., Dai, Z., Decker, S.R., Brunecky, R., Adney, W.S., Ding, S.-Y., Himmel, M.E.: Heterologous expression of glycosyl hydrolases in planta: a new departure for biofuels. Trends Biotechnol. 26(8), 413–424 (2008)

    Article  Google Scholar 

  60. Timmis, J.N., Ayliffe, M.A., Huang, C.Y., Martin, W.: Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Natl. Rev. Genet. 5(2), 123–135 (2004)

    Article  Google Scholar 

  61. Twyman, R.M., Stoger, E., Schillberg, S., Christou, P., Fischer, R.: Molecular farming in plants: host systems and expression technology. Trends Biotechnol. 21(12), 570–578 (2003)

    Article  Google Scholar 

  62. Vega-Sánchez, M.E., Ronald, P.C.: Genetic and biotechnological approaches for biofuel crop improvement. Curr. Opin. Biotechnol. 21(2), 218–224 (2010)

    Article  Google Scholar 

  63. Verma, D., Daniell, H.: Chloroplast vector systems for biotechnology applications. Plant Physiol. 145(4), 1129–1143 (2007)

    Article  Google Scholar 

  64. Verma, D., Kanagaraj, A., **, S., Singh, N.D., Kolattukudy, P.E., Daniell, H.: Chloroplast-derived enzyme cocktails hydrolyse lignocellulosic biomass and release fermentable sugars. Plant Biotechnol. J. 8(3), 332–350 (2010)

    Article  Google Scholar 

  65. Verma, D., Samson, N.P., Koya, V., Daniell, H.: A protocol for expression of foreign genes in chloroplasts. Natl. Protoc. 3(4), 739–758 (2008)

    Article  Google Scholar 

  66. Wen, F., Nair, N.U., Zhao, H.: Protein engineering in designing tailored enzymes and microorganisms for biofuels production. Curr. Opin. Biotechnol. 20(4), 412–419 (2009)

    Article  Google Scholar 

  67. Wilson, D.B.: Studies of Thermobifida fusca plant cell wall degrading enzymes. Chem. Rec. 4(2), 72–82 (2004)

    Article  Google Scholar 

  68. **menes, E., Kim, Y., Mosier, N., Dien, B., Ladisch, M.: Deactivation of cellulases by phenols. Enzyme Microb. Technol. 48(1), 54–60 (2011)

    Article  Google Scholar 

  69. Yang, B., Wyman, C.E.: Pretreatment: The key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod. Bioref. 2(1), 26–40 (2008)

    Article  Google Scholar 

  70. Yu, L.-X., Gray, B.N., Rutzke, C.J., Walker, L.P., Wilson, D.B., Hanson, M.R.: Expression of thermostable microbial cellulases in the chloroplasts of nicotine-free tobacco. J. Biotechnol. 131(3), 362–369 (2007)

    Article  Google Scholar 

  71. Yuan, J.S., Tiller, K.H., Al-Ahmad, H., Stewart, N.R., Stewart Jr, C.N.: Plants to power: bioenergy to fuel the future. Trends Plant Sci. 13(8), 421–429 (2008)

    Article  Google Scholar 

  72. Zaldivar, J., Nielsen, J., Olsson, L.: Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl. Microbiol. Biotechnol. 56(1), 17–34 (2001)

    Article  Google Scholar 

  73. Zhou, F., Badillo-Corona, J.A., Karcher, D., Gonzalez-Rabade, N., Piepenburg, K., Borchers, A.M.I., Maloney, A.P., Kavanagh, T.A., Gray, J.C., Bock, R.: High-level expression of human immunodeficiency virus antigens from the tobacco and tomato plastid genomes. Plant Biotechnol. J. 6(9), 897–913 (2008)

    Article  Google Scholar 

  74. Zhou, F., Karcher, D., Bock, R.: Identification of a plastid intercistronic expression element (IEE) facilitating the expression of stable translatable monocistronic mRNAs from operons. Plant J 52(5), 961–972 (2007)

    Article  Google Scholar 

  75. Ziegelhoffer, T., Raasch, J.A., Austin-Phillips, S.: Dramatic effects of truncation and sub-cellular targeting on the accumulation of recombinant microbial cellulase in tobacco. Mol. Breeding 8(2), 147–158 (2001)

    Article  Google Scholar 

  76. Ziegelhoffer, T., Will, J., Austin-Phillips, S.: Expression of bacterial cellulase genes in transgenic alfalfa (Medicago sativa L.), potato (Solanum tuberosum L.) and tobacco (Nicotiana tabacum L.). Mol. Breeding 5(4), 309–318 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Commandeur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Klinger, J., Commandeur, U., Fischer, R. (2015). Co-expression of Cellulases in the Chloroplasts of Nicotiana tabacum . In: Klaas, M., Pischinger, S., Schröder, W. (eds) Fuels From Biomass: An Interdisciplinary Approach. BrenaRo 2011. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 129. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45425-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45425-1_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45424-4

  • Online ISBN: 978-3-662-45425-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation