Mitochondrial Nucleoid and Transcription Factor A

  • Chapter
Mitochondrial Pathogenesis

Abstract

Nuclear DNA is tightly packed into nucleosomal structure. In con-trast, human mitochondrial DNA (mtDNA) had long been believed to be rather naked because mitochondria lack histone. Mitochondrial transcription factor A (TFAM), a member of a high mobility group (HMG) protein family and a first-identified mitochondrial transcription factor, is essential for maintenance of mitochondrial DNA. Abf2, a yeast counterpart of human TFAM, is abun-dant enough to cover the whole region of mtDNA and to play a histone-like role in mitochondria. Human TFAM is indeed as abundant as Abf2, suggesting that TFAM also has a histone-like architectural role for maintenance of mtDNA. When human mitochondria are solubilized with non-ionic detergent Nonidet-P40 and then separated into soluble and particulate fractions, most TFAM is recovered from the particulate fraction together with mtDNA, suggesting that human mtDNA forms a nucleoid structure. TFAM is tightly associated with mtDNA as a main component of the nucleoid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kang, D. & N. Hamasaki. 2002. Maintenance of mitochondrial DNA integrity: repair and degradation. Curr. Genet. 41: 311–322.

    Article  CAS  PubMed  Google Scholar 

  2. Fisher, R.P. & D.A. Clayton. 1988. Purification and characterization of human mitochondrial transcription factor 1. Mol. Cell. Biol. 8: 3496–3509.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Parisi, M.A. et al. 1993. A human mitochondrial transcription activator can functionally replace a yeast mitochondrial HMG-box protein both in vivo and in vitro. Mol. Cell. Biol. 13: 1951–1961.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Falkenberg, M. et al. 2002. Mitochondrial transcription factors B1 and B2 activate transcription of human mtDNA. Nat. Genet. 31: 289–294.

    Article  CAS  PubMed  Google Scholar 

  5. Shadel, G.S. & D.A. Clayton. 1997. Mitochondrial DNA maintenance in vertebrates. Annu. Rev. Biochem. 66: 409–435.

    Article  CAS  PubMed  Google Scholar 

  6. Larsson, N.G. et al. 1998. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat. Genet. 18: 231–236.

    Article  CAS  PubMed  Google Scholar 

  7. Bustin, M. 1999. Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins. Mol. Cell. Biol. 19: 5237–5246.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Wolffe, A.P. 1994. Architectural transcription factors. Science 264: 1100–1103.

    Article  CAS  PubMed  Google Scholar 

  9. Wolffe, A.P. 1999. Architectural regulations and HMG1. Nat. Genet. 22: 215–217.

    Article  CAS  PubMed  Google Scholar 

  10. Diffley, J.F.X. & B. Stillman. 1992. DNA binding properties of an HMGl-related protein from yeast mitochondria. J. Biol. Chem. 267: 3368–3374.

    CAS  PubMed  Google Scholar 

  11. Diffley, J.F.X. & B. Stillman. 1991. A close relative of the nuclear, chromosomal high-mobility group protein HMG1 in yeast mitochondria. Proc. Natl. Acad. Sci. USA 88: 7864–7868.

    Article  CAS  PubMed  Google Scholar 

  12. Megraw, T.L. & C.B. Chae. 1993. Functional complementarity between the HMG-like yeast mitochondrial histone HM and bacterial histone-like protein HU. J. Biol. Chem. 268: 12758–12763.

    CAS  PubMed  Google Scholar 

  13. Miyakawa, I. et al. 1987. Isolation of morphologically intact mitochondrial nucleoids from the yeast, Saccharomyces cerevisiae. J. Cell Sci. 88: 431–439.

    CAS  PubMed  Google Scholar 

  14. Sasaki, N. et al. 1998. DNA synthesis in isolated mitochondrial nucleoids from plasmodia of Physarum polycephalum. Protoplasma 203: 221–231.

    Article  CAS  Google Scholar 

  15. Satoh, M. & T. Kuroiwa. 1991. Organization of multiple nucleoids and DNA molecules in mitochondria of a human cell. Exp. Cell Res. 196: 137–140.

    Article  CAS  PubMed  Google Scholar 

  16. Spelbrink, J.N. et al. 2001 Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat. Genet. 28: 223–231.

    Article  CAS  PubMed  Google Scholar 

  17. Garrido, N. et al. 2003. Composition and dynamics of human mitochondrial nucleoids. Mol. Biol. Cell. 14: 1583–1596.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Alam, T.I. et al. 2003. Human mitochondrial DNA is packaged with TEAM. Nucleic Acids Res. 31: 1640–1645.

    Article  CAS  PubMed  Google Scholar 

  19. Takamatsu, C. et al. 2002. Regulation of mitochondrial D-loops by transcription factor A and single-stranded DNA-binding protein. EMBO Rep. 3: 451–456.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Clayton, D.A. 1991. Replication and transcription of vertebrate mitochondrial DNA. Annu. Rev. Cell Biol. 7: 453–478.

    Article  CAS  PubMed  Google Scholar 

  21. Fisher, R.P. et al. 1991. A rapid, efficient method for purifying DNA-binding proteins. J. Biol. Chem. 266: 9153–9160.

    CAS  PubMed  Google Scholar 

  22. Ohno, T. et al. 2000. Binding of human mitochondrial transcription factor A, an HMG box protein, to a four-way DNA junction. Biochem. Biophys. Res. Commun. 271: 492–498.

    Article  CAS  PubMed  Google Scholar 

  23. Williams, R.S. 1986. Mitochondrial gene expression in mammalian striated muscle. J. Biol. Chem. 261: 12390–12394.

    CAS  PubMed  Google Scholar 

  24. Goto, A. et al. 2001. Drosophila mitochondrial transcription factor A (d-TFAM) is dispensable for the transcription of mitochondrial DNA in Kcl 67 cells. Biochem. J. 354: 243–248.

    Article  CAS  PubMed  Google Scholar 

  25. Nam, S.C. & C. Kang. 2001. Expression of cloned cDNA for the human mitochondrial RNA polymerase in Escherichia coli and purification. Protein Expr. Purif. 21: 485–491.

    Article  CAS  PubMed  Google Scholar 

  26. Prieto-Martin, A. et al. 2001 A study on the human mitochondrial RNA polymerase activity points to existence of a transcription factor B-like protein. FEBS Lett. 503: 51–55.

    Article  CAS  PubMed  Google Scholar 

  27. McCulloch, V. et al. 2002. A human mitochondrial transcription factor is related to RNA adenine methyltransferases and binds S-adenosylmethionine. Mol. Cell. Biol. 22: 1116–1125.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Jackson, D.A. et al. 1996. Sequences attaching loops of nuclear and mitochondrial DNA to underlying structures in human cells: the role of transcription units. Nucleic Acids Res. 24: 1212–1219.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Getzenberg, R.H. et al. 1991. Nuclear structure and the three-dimensional organization of DNA. J. Cell. Biochem. 47: 289–299.

    Article  CAS  PubMed  Google Scholar 

  30. Brown, D.A. & J.K. Rose. 1992 Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68: 533–544.

    Article  CAS  PubMed  Google Scholar 

  31. Yaffe, M.P. 1999. The machinery of mitochondrial inheritance and behavior. Science 283: 1493–1497.

    Article  CAS  PubMed  Google Scholar 

  32. Carre, M. et al. 2002. Tubulin is an inherent component of mitochondrial membranes that interacts with the voltage-dependent anion channel. J. Biol. Chem. 277: 33664–33669.

    Article  CAS  PubMed  Google Scholar 

  33. Tolstonog, G.V. et al. 2001. Isolation of SDS-stable complexes of the intermediate filament protein vimentin with repetitive, mobile, nuclear matrix attachment region, and mitochondrial DNA sequence elements from cultured mouse and human fibroblasts. DNA Cell Biol. 20: 531–554.

    Article  CAS  PubMed  Google Scholar 

  34. Herrmann, H. & U. Aebi. 2000. Intermediate filaments and their associates: multi-talented structural elements specifying cytoarchitecture and cytodynamics. Curr. Opin. Cell. Biol. 12: 79–90.

    Article  CAS  PubMed  Google Scholar 

  35. Kubota, T. et al. 1997. Cardiac-specific overexpression of tumor necrosis factor-alpha causes lethal myocarditis in transgenic mice. J. Card. Fail. 3: 117–124.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongchon Kang .

Editor information

Hong Kyu Lee Salvatore DiMauro Masashi Tanaka Yau-Huei Wei

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kanki, T. et al. (2004). Mitochondrial Nucleoid and Transcription Factor A. In: Lee, H.K., DiMauro, S., Tanaka, M., Wei, YH. (eds) Mitochondrial Pathogenesis. Annals of the New York Academy of Sciences, vol 1011. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-41088-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-41088-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-1-57331-491-6

  • Online ISBN: 978-3-662-41088-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation