Mitochondrial DNA Mutation and Depletion Increase the Susceptibility of Human Cells to Apoptosis

  • Chapter
Mitochondrial Pathogenesis

Part of the book series: Annals of the New York Academy of Sciences ((ANYAS,volume 1011))

Abstract

Mitochondrial diseases, such as MELAS, MERRF, and CPEO syn-dromes, are associated with specific point mutations or large-scale deletions of mitochondrial DNA (mtDNA), which impair mitochondrial respiratory func-tions and result in decreased production of ATP in affected tissues. Recently, mitochondria have been recognized to act as key players in the regulation of cell death. To investigate whether a pathogenic mutation of mtDNA exerts any effect on the process of apoptosis of human cells, we constructed a series of cybrid human cells harboring different proportions of mtDNA with the A3243G or the A8344G transition, or with the 4,977-bp deletion, by cytoplasmic fusion of patients’ skin fibroblasts with mtDNA-depleted ρ0 cells of an immortal human osteosarcoma cell line (143B). We observed that the decrease in cell viability upon staurosporine treatment or exposure to ultraviolet (UV) irradiation was more pronounced in the cybrids harboring high levels of mutated mtDNA compared with the control cybrids. Using DNA fragmentation analysis, we found that the cell death induced by treatment with 100 nM staurosporine or by exposure to UV irradiation at 20 J/m2 was caused by apoptosis, not necrosis. Moreover, we demonstrated activation of caspase 3 by Western blot and enhanced release of cytochrome c after 100 nM staurosporine treatment or 20 J/m2 UV irradiation of the cybrids harboring high levels of the three mtDNA mutations. Furthermore, as compared with parental osteosarcoma 143B cells, the ρ0 cells were found to be more susceptible to apoptosis, which was accompanied by caspase 3 activation and cytochrome c release. This indicates that mtDNA plays an important role in the regulation of apoptosis in human cells. Taken together, these findings suggest that mutation and depletion of mtDNA increase the susceptibility of human cells to apoptosis triggered by exogenous stimuli such as UV irradiation or staurosporine.

Authors C-Y. Liu and C-F. Lee contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Leonard, J.V. & A.V.H. Schapira. 2000. Mitochondrial respiratory chain disorders II: neurodegenerative disorders and nuclear gene defects. Lancet 355: 389–394.

    Article  CAS  PubMed  Google Scholar 

  2. Tatton, W.G. & C.W. Olanow. 1999. Apoptosis in neurodegenerative diseases: the role of mitochondria. Biochim. Biophys. Acta 1410: 195–213.

    Article  CAS  PubMed  Google Scholar 

  3. Hu, Y., M.A. Benedict, L. Ding & G. Nuñez. 1999. Role of cytochrome c and dATP/ATP in Apaf-1-mediated caspase-9 activation and apoptosis. EMBO J. 18: 3586–3595.

    Article  CAS  PubMed  Google Scholar 

  4. Green, D.R. & J.C. Reed. 1998. Mitochondria and apoptosis. Science 281: 1309–1312.

    Article  CAS  PubMed  Google Scholar 

  5. Wang, J., J.P. Silva, CM. Gustafsson, et al. 2001. Increased in vivo apoptosis in cells lacking mitochondrial DNA gene expression. Proc. Natl. Acad. Sci. USA 98: 4038–4043.

    Article  CAS  PubMed  Google Scholar 

  6. Bernardi, P., L. Scorrano, R. Colonna, et al. 1999. Mitochondria and cell death: mechanistic aspects and methodological issues. Eur. J. Biochem. 264: 687–701.

    Article  CAS  PubMed  Google Scholar 

  7. Loeffler, M. & G. Kroemer. 2000. The mitochondrion in cell death control: certainties and incognita. Exp. Cell Res. 256: 19–26.

    Article  CAS  PubMed  Google Scholar 

  8. Voehringer, D.W., D.L. Hirschberg, J. **ao, et al. 2000. Gene microarray identification of redox and mitochondrial elements that control resistance or sensitivity to apoptosis. Proc. Natl. Acad. Sci. USA 97: 2680–2685.

    Article  CAS  PubMed  Google Scholar 

  9. Dimauro, S., E. Bonilla, M. Davidson, et al. 1998. Mitochondria in neuromuscular disorders. Biochim. Biophys. Acta 1366: 199–210.

    Article  CAS  PubMed  Google Scholar 

  10. Wei, Y.H., C.F. Lee, H.C. Lee, et al. 2001. Increase of mitochondrial mass and mitochondrial genome in association with enhanced oxidative stress in human cells harboring 4,977 bp-deleted mitochondrial DNA. Ann. N.Y. Acad. Sci. 928: 97–112.

    Article  CAS  PubMed  Google Scholar 

  11. King, M.P. & G. Attardi. 1989. Human cells lacking mtDNA repopulation with exogenous mitochondria by complementation. Science 246: 500–503.

    Article  CAS  PubMed  Google Scholar 

  12. Wei, Y.H. 1998. Mitochondrial DNA mutations and oxidative damage in aging and diseases: an emerging paradigm of gerontology and medicine. Proc. Natl. Sci. Counc. ROC, Part B: Life Sci. 22: 55–67.

    CAS  Google Scholar 

  13. Lu, C.Y., D.J. Tso, T. Yang, et al. 2002. Detection of DNA mutations associated with mitochondrial diseases by Agilent 2100 bioanalyzer. Clin. Chim. Acta 318: 97–105.

    Article  CAS  PubMed  Google Scholar 

  14. Jiang, S., J. Cai, D.C. Wallace, et al. 1999. Cytochrome c-mediated apoptosis in cells lacking mitochondrial DNA. Signaling pathway involving release and caspase 3 activation is conserved. J. Biol. Chem. 274: 29905–29911.

    CAS  Google Scholar 

  15. Herrmann, M., H.M. Lorenz, R. Voll, et al. 1994. A rapid and simple method for the isolation of apoptotic DNA fragments. Nucleic Acids Res. 22: 5506–5507.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Shlah, S.G., S.E. Chuang, Y.P. Chau, et al. 1999. Activation of c-Jim NH2-terminal kinase and subsequent CPP32/Yama during topoisomerase inhibitor beta-lapachone-induced apoptosis through an oxidation-dependent pathway. Cancer Res. 59: 391–398.

    Google Scholar 

  17. Lee, H.C., P.H. Yin, C.Y. Lu, et al. 2000. Increase of mitochondria and mitochondrial DNA in response to oxidative stress in human cells. Biochem. J. 348: 425–432.

    Article  CAS  PubMed  Google Scholar 

  18. Silva, J.P. & N.G. Larsson. 2002. Manipulation of mitochondrial DNA gene expression in the mouse. Biochim. Biophys. Acta 1555: 106–110.

    Article  CAS  PubMed  Google Scholar 

  19. Mirabella, M., S.D. Giovanni, G. Silvestri, et al. 2000. Apoptosis in mitochondrial encephalomyopathies with mitochondrial DNA mutations: a potential pathogenic mechanism. Brain 123: 93–104.

    Article  PubMed  Google Scholar 

  20. Jarvis, W.D., A.J. Turner, L.F. Povirk, et al. 1994. Induction of apoptotic DNA fragmentation and cell death in HL-60 human promyelocytic leukemia cells by pharmacological inhibitors of protein kinase C. Cancer Res. 54: 1707–1714.

    CAS  PubMed  Google Scholar 

  21. Rabkin, S.W. 2001. Prevention of staurosporine-induced cell death in embryonic chick cardiomyocyte is more dependent on caspase-2 than caspase-3 inhibition and is independent of sphingomyelinase activation and ceramide generation. Arch. Biochem. Biophys. 390: 119–127.

    Article  CAS  PubMed  Google Scholar 

  22. Kruman, I., Q. Guo & M.P. Mattson. 1998. Calcium and reactive oxygen species mediate staurosporine-induced mitochondrial dysfunction and apoptosis in PC12 cells. J. Neurosci. Res. 51: 293–308.

    Article  CAS  PubMed  Google Scholar 

  23. Campbell, C., A.G. Quinn, B. Angus, et al. 1993. Wavelength specific patterns of p53 induction in human skin following exposure to UV radiation. Cancer Res. 53: 2697–2699.

    CAS  PubMed  Google Scholar 

  24. Brash, D.E., A. Ziegler, A.S. Jonason, et al. 1996. Sunlight and sunburn in human skin cancer: p53, apoptosis, and tumor promotion. J. Invest. Dermatol. Symp. Proc. 1: 136–142.

    CAS  Google Scholar 

  25. Zhuang, L., B. Wang & D.N. Sauder. 2000. Molecular mechanism of ultraviolet-induced keratinocyte apoptosis. J. Interferon Cytokine Res. 20: 445–454.

    Article  CAS  PubMed  Google Scholar 

  26. Matsumura, Y. & H.N. Ananthaswamy. 2002. Molecular mechanisms of photocarcinogenesis. Front. Biosci. 7: d765–d783.

    Article  CAS  PubMed  Google Scholar 

  27. Danielson, S.R., A. Wong, V. Carelli, et al. 2002. Cells bearing mutations causing Leber’s hereditary optic neuropathy are sensitized to Fas-induced apoptosis. J. Biol. Chem. 277: 5810–5815.

    Article  CAS  PubMed  Google Scholar 

  28. Wei, Y.H., C.Y Lu, H.C. Lee, et al. 1998. Oxidative damage and mutation to mitochondrial DNA and age-dependent decline of mitochondrial respiratory function. Ann. N.Y Acad. Sci. 854: 155–170.

    Article  CAS  PubMed  Google Scholar 

  29. Cai, J., D.C. Wallace, B. Zhivotovsky, et al. 2000. Separation of cytochrome c-dependent caspase activation from thiol-disulfide redox change in cells lacking mitochondrial DNA. Free Radic. Biol. Med. 29: 334–342.

    Article  CAS  PubMed  Google Scholar 

  30. Dey, R. & C.T. Moraes. 2000. Lack of oxidative phosphorylation and low mitochondrial membrane potential decrease susceptibility to apoptosis and do not modulate the protective effect of Bcl-x(L) in osteosarcoma cells. J. Biol. Chem. 275: 7087–7094.

    Article  CAS  PubMed  Google Scholar 

  31. Sciacco, M., G. Fagiolari, C. Lamperti, et al. 2001. Lack of apoptosis in mitochondrial encephalomyopathies. Neurology 56: 1070–1074.

    Article  CAS  PubMed  Google Scholar 

  32. Cortopassi, G. & E. Wang. 1995. Modelling the effects of age-related mtDNA mutation accumulation; complex I deficiency, Superoxide and cell death. Biochim. Biophys. Acta 1271: 171–176.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yau-Huei Wei .

Editor information

Hong Kyu Lee Salvatore DiMauro Masashi Tanaka Yau-Huei Wei

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liu, CY., Lee, CF., Hong, CH., Wei, YH. (2004). Mitochondrial DNA Mutation and Depletion Increase the Susceptibility of Human Cells to Apoptosis. In: Lee, H.K., DiMauro, S., Tanaka, M., Wei, YH. (eds) Mitochondrial Pathogenesis. Annals of the New York Academy of Sciences, vol 1011. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-41088-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-41088-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-1-57331-491-6

  • Online ISBN: 978-3-662-41088-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation