Volume Regulation in the Collecting Duct and Related Epithelia

  • Chapter
Nephrology
  • 6 Accesses

Summary

Under normal physiological conditions, cells of tight, Na+-reabsorbing urinary epithelia, such as the collecting tubule, are exposed to both anisosmotic and isosmotic volume stress. A common but poorly understood response of these cells to volume perturbation is the activation of mechanisms that restore volume to its original resting value. The purpose of this article is to review briefly what is currently known about volume regulatory processes in the collecting tubule, amphibian and mammalian bladder, and frog skin. Specifically, the role of solute loss and accumulation pathways, transcellular cross-talk mechanisms, and volume sensor/transducer systems will be discussed. Key questions in need of future research will be emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. MacRobbie EAC, Ussing HH (1961) Osmotic behaviour of the epithelial cells of frog skin. Acta Physiol Scand 53: 348–365

    Article  PubMed  CAS  Google Scholar 

  2. Ussing HH (1986) Epithelial cell volume regulation illustrated by experiments in frog skin. Renal Physiol 9: 38–46

    PubMed  CAS  Google Scholar 

  3. Costa PMF, Fernandes PL, Ferreira HG, Ferreira KTG, Giraldez F (1987) Effects of cell volume changes on membrane ionic permeabilities and sodium transport in frog skin (Rana ridibunda) J Physiol 393: 1–17

    PubMed  CAS  Google Scholar 

  4. Ussing HH (1985) Volume regulation and basolateral co-transport of sodium, potassium and chloride ions in frog skin epithelium. Pflugers Arch 405: S2–S7

    Article  PubMed  CAS  Google Scholar 

  5. Davis CW, Finn AL (1987) Interactions of sodium transport, cell volume, and calcium in frog urinary bladder. J Gen Physiol 89: 687–702

    Article  PubMed  CAS  Google Scholar 

  6. Davis CW, Finn AL (1982) Sodium transport inhibition by amiloride reduces basolateral membrane potassium conductance in tight epithelia. Science 216: 525–527

    Article  PubMed  CAS  Google Scholar 

  7. Lewis SA, Butt AG, Bowler MJ, Leader JP, MacKnight ADC (1985) Effects of anions on cellular volume and transepithelial Na’ transport across toad urinary bladder. J Membr Biol 83: 119–137

    Article  PubMed  CAS  Google Scholar 

  8. Donaldson PJ, Chen LK, Lewis SA (1989) Effects of serosal anion composition on the permeability properties of rabbit urinary bladder. Am J Physiol 256: F1125–F1134

    PubMed  CAS  Google Scholar 

  9. Donaldson PJ, Lewis SA (1990) Effect of hyperosmotic challenge on basolateral membrane potential in rabbit urinary bladder. Am J Physiol 258: C248–C257

    PubMed  CAS  Google Scholar 

  10. Strange K (1988) RVD in principal and intercalated cells of rabbit cortical collecting tubule. Am J Physiol 255: C612–C621

    PubMed  CAS  Google Scholar 

  11. Wolff SD, Balaban RS (1990) Regulation of the predominant renal medullary organic solutes in vivo. Annu Rev Physiol 52: 727–746

    Article  PubMed  CAS  Google Scholar 

  12. Strange K, Spring KR (1987) Cell membrane water permeability of rabbit cortical collecting duct. J Membr Biol 96: 27–43

    Article  PubMed  CAS  Google Scholar 

  13. Natke E, Terranova R, DiScala VA (1989) Importance of butyrate in hypertonic volume regulation of cortical collecting tubule ( CCT ). Kidney Int 35: 500

    Google Scholar 

  14. Rome L, Grantham J, Savin V, Lohr J, Lechene C (1989) Proximal tubule volume regulation in hyperosmotic media: intracellular K*, Nat, and Cl-. Am J Physiol 257: C1093–C1100

    PubMed  CAS  Google Scholar 

  15. Sun A, Hebert SC (1989) Rapid hypertonic cell volume regulation in the perfused inner medullary collecting duct. Kidney Int 36: 831–842

    Article  PubMed  CAS  Google Scholar 

  16. Sands JM, Terada Y, Bernard LM, Knepper MA (1989) Aldose reductase activities in microdissected rat renal tubule segments. Am J Physiol 256: F563–F569

    PubMed  CAS  Google Scholar 

  17. Wirthensohn G, Lefrank S, Schmolke M, Guder WG (1989) Regulation of organic osmolyte concentrations in tubules from rat renal inner medulla. Am J Physiol 256: F128–F135

    PubMed  CAS  Google Scholar 

  18. Schultz SG (1981) Homocellular regulatory mechanisms in sodium-transporting epithelia: avoidance of extinction by “flush-through.” Am J Physiol 241: F579–F590

    PubMed  CAS  Google Scholar 

  19. Heiman SI, Nagel W, Fisher RS (1979) Ouabain on active transepithelial Na transport in frog skin: studies with microelectrodes. J Gen Physiol 74: 105–127

    Article  Google Scholar 

  20. Strange K (1989) Ouabain-induced cell swelling in rabbit cortical collecting tubule: NaCI transport by principal cells. J Membr Biol 107: 249–261

    Article  PubMed  CAS  Google Scholar 

  21. Strange K (1990) Volume regulation following Na* pump inhibition in CCT principal cells: apical K. loss. Am J Physiol 258: F732–F740

    PubMed  CAS  Google Scholar 

  22. Strange K Volume regulatory Cl-loss following Na* pump inhibition in CCT principal cells. Am J Physiol, in press

    Google Scholar 

  23. Frindt G, Palmer LG (1987) Ca-activated K channels in apical membrane of mammalian CCT, and their role in K secretion. Am J Physiol 252: F458–F467

    PubMed  CAS  Google Scholar 

  24. Chamberlin ME, Strange K (1989) Anisosmotic cell volume regulation: a comparative view. Am J Physiol 257: C159–C173

    PubMed  CAS  Google Scholar 

  25. Haber E, Haupert GT (1987) The search for a hypothalamic Nat-Kt ATPase inhibitor. Hypertension 9: 315–324

    Article  PubMed  CAS  Google Scholar 

  26. Doucet A, Barlet C (1986) Evidence for differences in the sensitivity to ouabain of NaKATPase along the nephrons of rabbit kidney. J Biol Chem 261: 993–995

    PubMed  CAS  Google Scholar 

  27. Rome L, Lechene C, Grantham JJ (1990) Proximal tubule volume regulation in hypo-osmotic media: intracellular K*, Na*, and CI-. J Am Soc Nephrol 1: 211–218

    PubMed  CAS  Google Scholar 

  28. Wong SME, DeBell MC, Chase HS (1990) Cell swelling increases intracellular free [Ca] in cultured toad bladder cells. Am J Physiol 258: F292–F296

    PubMed  CAS  Google Scholar 

  29. Morris CE (1990) Mechanosensitive ion channels. J Membr Biol 113: 93–107

    Article  PubMed  CAS  Google Scholar 

  30. Reuss L (1988) Cell volume regulation in nonrenal epithelia. Renal Physiol Biochem 3–5: 187–201

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Japan

About this chapter

Cite this chapter

Strange, K. (1991). Volume Regulation in the Collecting Duct and Related Epithelia. In: Hatano, M. (eds) Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-35158-1_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-35158-1_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70074-6

  • Online ISBN: 978-3-662-35158-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation