Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 65))

  • 286 Accesses

Abstract

The linearly extended overall radiation-induced change in free volume — either resulting in a net increase or a decrease — together with the extended distribution of newly formed radicals, is one of the most characteristic properties of ion tracks in polymers, and therefore deserves special attention. According to findings on tracks in, e.g., polyimide [1], the free ion-track volume by no means just forms a small empty cylinder of nanometric dimension in the ion-track center, unless the tracks are extremely short [2]. Rather, the polymeric ion tracks appear to have a sponge-like consistency of free volume intermixed with carbon-enriched radiochemical reaction products with a fractal structure, which therefore often enables an enhanced transport of matter along them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Klett R, Charakterisierung von hochenergetischen Schwerionenspuren in Polyimid. PhD. Thesis, Humboldt-University, Berlin 1996 (in German)

    Google Scholar 

  2. Eyal Y, Gassan K, Observation of latent heavy-ion tracks in polyimide by means of transmission electron microscopy. Nucl Instrum Methods B156, 183–190 (1999)

    Article  CAS  Google Scholar 

  3. Wang L, Trautmann Ch, Vetter J, Quan Z, Cohen D, Fladry H, Adhesion enhancement by GeV heavy ion irradiation. Radiat Eff Defects Solids 126, 403–407 (1993)

    Article  CAS  Google Scholar 

  4. Wang L (1996) personal communication, and Wang L, Angert N, Trautmann C, Vetter J, Effect of ion irradiation and heat treatment on adhesion in the Cu/Teflon system. J Adhes Sci Technol 9, 1523–1529 (1995)

    Article  Google Scholar 

  5. Avasthi DK, Assmann W, Nolte H, Mieskes HD, Huber H, Subramaniyam ET, Tripathy A, Ghosh S, On-line study of ion-beam induced mixing at interface by swift heavy ions. Nucl Instrum Methods B156, 143–147 (1999)

    Article  CAS  Google Scholar 

  6. Bolse W, Atomic transport in hot ion tracks. Presented at the 5th Intl. Symposium on “Swift Heavy Ions in Matter”, May 22–25, 2002, Giardini Naxos, Italy

    Google Scholar 

  7. Soares MRF, Kaschny JRA, dos Santos JHR, Amaral L, Behar M, Fink D, Diffusion and solubility of Au implanted into the AZ1350 photoresist, Nucl Instrum Methods B166–167, 615–620 (2000)

    Google Scholar 

  8. Soares MRF, Kaschny JRA, dos Santos JHR, Amaral L, Behar M, Fink D, Diffusion and solubility of Bi implanted into the AZ1350 photoresist. Nucl Instrum Methods B191, 690–694 (2002)

    Article  CAS  Google Scholar 

  9. Fink D, Müller M, Nakao Y, Hirata K, Kobayashi Y, Behar M, Kaschny JR, Vacík J, Hnatowicz V, Ion-induced redistribution of palladium in polymethyl methacrylate, Nucl Instrum Methods B166–167, 610–614 (2000)

    Google Scholar 

  10. Biswas A, Marton Z, Kanzow J, Kruse J, Zaporojtchenko V, Faupel F, Controlled generation of Ni nanoparticles in the cap** layers of teflon AF by vapor phase tandem evaporation. In print (2003)

    Google Scholar 

  11. Biswas A, Avasthi DK, Kanzow J, Ding SJ, Fink D, Gupta R, Zaporojtchenko V, Faupel F, Nanostructural modifications in Au cluster arrays distributed in teflon AF layers upon MeV heavy ion impact. In print (2003)

    Google Scholar 

  12. Moiseev YuV, Zaikov GE Chemical Stability of Polymers in Aggressive Media. Khimia, Moscow (1979) (in Russian)

    Google Scholar 

  13. Born M, Volumen and Hydratationswärme der Ionen. Z Phys 1, 45–48 (1920)

    Article  CAS  Google Scholar 

  14. Markin VS, Chismadzhev YuA, Induced Ionic Transport. Nauka, Moscow (1974) (in Russian)

    Google Scholar 

  15. Samoilova LI, Apel PYu, Etching of small pores in PETP by different alkalis. Radiat Meas 25, 717–720 (1995)

    Article  CAS  Google Scholar 

  16. Parsegian A, Energy of an ion crossing a low dielectric membrane: solutions to four relevant electrostatic problems. Nature 221, 844–846 (1969)

    Article  CAS  Google Scholar 

  17. Her M, Lösungsmittel-induzierte Delegation molekularer Sonden in latente Kernspuren and ihre photophysikalische Analyse, PhD. Thesis, Technical University Clausthal, 1996 (in German)

    Google Scholar 

  18. Fink D, Muller M, Petrov A (2002) Etching kinetics of swift heavy ion irradiated polymers with insoluble additives or reaction products. Proc 5th Intl. Conf. on Swift Heavy Ions in Matter, May 22–25, 2002, Giardini Naxos, Italy

    Google Scholar 

  19. Fink D, Muller M, Capillaric penetration of etchant solution into swift heavy ion irradiated silicone rubber. Nucl Instrum Methods B170, 134–144 (2000)

    Article  CAS  Google Scholar 

  20. Fink D, Petrov A, Müller M, Hnatowicz V, Vacík J, Cervenâ J, Marker penetration into high energy ion irradiated polymers. Surf Coat Technol 158–159, 228–233 (2002)

    Article  Google Scholar 

  21. Fink D, Dwivedi KK, Müller M, Ghosh S, Hnatowicz V, Vacík J, Cervenâ J, On the penetration of etchant into tracks in polycarbonate. Radiat Meas 32, 307–313 (2000)

    Article  CAS  Google Scholar 

  22. Luck HB, Kinetik and Mechanismus der Bildung and Atzung von Teilchen-spuren in Polyethylenterephthalat. PhD. Thesis, TU Dresden, published as report ZfK-473 of the “Zentralinstitut für Kernforschung Rossendorf bei Dresden”(1982), and references: Be51, Be60, LL56, RM72, RM75, GJ78, DB75, SB78, and RA60 therein (in German)

    Google Scholar 

  23. Ghosh S, Klett R, Fink D, Dwivedi KK, Vacík J, Hnatowicz V, Jervenâ J, On the penetration of aqueous solutions into some pristine and heavy-ion irradiated polymers, Radiat Phys Chem 55, 271–284 (1999)

    Article  CAS  Google Scholar 

  24. Apel PYu, Schulz A, Spohr R, Trautmann C, Vutsadakis V, Tracks of very heavy ions in polymers. Nucl Instrum Methods B131, 55–63 (1997)

    Article  CAS  Google Scholar 

  25. Ferry JD, Viscoelastic Properties of Polymers, 3rd. edn, Wiley, New York

    Google Scholar 

  26. Davenas J, Xu XL, Diffusion of iodine into polyimide films modified by ion bombardment. Nucl Instrum Methods B81, 33–38 (1992)

    Google Scholar 

  27. Fink D, Chaderton LT, Cruz SA, Fahrner WR, Hnatowicz V, TeKaat EH, Melnikov AA, Varichenko VS, Zaitsev AM, Ion track do**. Radiat Eff Defects Solids 132, 81–90 (1994)

    Article  CAS  Google Scholar 

  28. Fink D, Hnatowicz V, Vacík J, Chadderton LT, On the lithium uptake of MeV ion irradiated polymer foils from a LiC1 solution. Radiat Eff Defects Solids 132, 1–10 (1994)

    Article  CAS  Google Scholar 

  29. Thomas NL, Windle A, A theory of Case II diffusion. Polymer 23, 529–542 (1982)

    Article  CAS  Google Scholar 

  30. Fink D, Klett R, Mathis C, Vacík J, Hnatowicz V, Chadderton LT, Depth profiles of fullerene in ion irradiated polyimide. Nucl Instrum Methods B100, 69–79 (1995)

    Article  CAS  Google Scholar 

  31. Wood E, Sutton C, Beezer AE, Creighton JA, Davis AF, Mitchell JC, Surface enhanced Raman scattering (SERS) of membrane transport processes. Intl J Pharmaceut 154, 115–118 (1997)

    Article  CAS  Google Scholar 

  32. Fink D, Ghosh S, Klett R, Dwivedi KK, Kobayashi Y, Hirata K, Vacík J, Hnatowicz V, Cervenâ J, Chadderton LT, Transport processes during the incubation time of ion track etching in polymers. Nucl Instrum Methods B146, 486–490 (1998)

    Article  CAS  Google Scholar 

  33. Fink D, Ghosh S, Hirata K, Klett R, Dwivedi K, Vacík J, Hnatowicz V, On the Interaction of penetrant solutions with pristine and ion-irradiated polyimide. In: Yu.Ts. Oganessian, R. Kalpakchieva (eds.): Heavy Ion Physics. World Scientific, Singapore 1998, pp. 784–791

    Google Scholar 

  34. Fink D, Klett R, Hnatowicz V, Vacík J, Mathis C, Omichi H, Hosoi F, Chadderton LT, Wang L, Bonding of dopants to irradiated polymers, Nucl Instrum Methods B116, 434–439 (1996)

    Article  CAS  Google Scholar 

  35. Seki S, Kanzaki K, Yoshida Y, Tagawa S, Shibata H, Asai K, Ishigure K, Positive-negative inversion of silicon based resist materials: poly (di-nhexylsilane) for ion beam irradiation. Jpn J Appl Phys 36, 5361–5364 (1997)

    Article  CAS  Google Scholar 

  36. Fink D, Chung WH, Klett R, Döbeli M, Synal HA, Chadderton LT, Wang L, On the dyeing of ion tracks in polymers. Nucl Instrum Methods B108, 377–384 (1996)

    Article  CAS  Google Scholar 

  37. Fink D, Omichi H, Hosoi F, Tamada M, Hnatowicz V, Vacík J, Chadderton LT, Klett R, Solid and liquid phase do** of energetic ion tracks in polymers. Advanced Materials ‘83/Laser and Ion Beam Modification of Materials, I. Yamada et al. (eds.). Trans Mater Res Soc Jpn, Vol. 17, Elsevier B.V., 1994, pp. 581–583

    Google Scholar 

  38. Fink D, Klett R, Chung WH, Griinwald R, Döbeli M, Ames F, Chadderton LT, Vacík J, Hnatowicz V, Do** of C,n (n = 1, 3, 5, 8) cluster ion tracks in polyimide. Radiat Eff Defects Solids 140, 3–20 (1996)

    CAS  Google Scholar 

  39. Fink D, Vacik J, Klett R, Chadderton LT, Hnatowicz V, Do** of 20 MeV fullerene ion tracks in polyimide. Nucl Instrum Methods B119, 591–595 (1996)

    Article  CAS  Google Scholar 

  40. Vacík J, Cervenâ J, Hnatowicz V, Posta S, Fink D, Klett R, Strauss P, Simple technique for characterization of ion-modified polymeric foils. Surf Sci Technol 123, 97–100 (2000)

    Google Scholar 

  41. Vetter J, Mickler GH, Naumann I, TEM observation of latent tracks of heavy ions in semicrystalline polymers. Radiat Eff Defects Solids 143, 273–286 (1998)

    Article  CAS  Google Scholar 

  42. See, e.g., Munro HS, ESCA studies on the photooxidation and the gammaradiation-induced oxidation of low density polyethylene, Polym Degrad Stab 12, 249–259 (1985)

    Article  Google Scholar 

  43. Fink D, Klett R, Hu X, Müller M, Schiwietz G, **ao G, Chadderton LT, Wang L, Mathis C, Hnatowicz V, Vacfk J, Characterisation of aged latent ion tracks in polyimide. Nucl Instrum Methods B116, 66–71 (1996)

    Article  CAS  Google Scholar 

  44. Steckenreiter TH, Charakterisierung von Spuren energiereicher Ionen in Polymeren. PhD. Thesis, TH Darmstadt (1997) (in German)

    Google Scholar 

  45. Ghosh S, Klett R, Fink D, Dwivedi KK, Vacík J, Hnatowicz V, Cervenâ J, On the penetration of aqueous solutions into pristine and radiation damaged polyimide. Radiat Phys Chem 55, 271–284 (1999)

    Article  CAS  Google Scholar 

  46. Eßer M, Apel PYu, Brüchle W, Fuhrmann J, Heinrich B, Remmert G, Spohr R, Trautmann C, Vetter J, Solvent induced sensitization, GSI-Nachrichten, 03–93 11–16 (1993)

    Google Scholar 

  47. Eßer M, Fuess H, Spohr R, Steckenreiter T, Trautmann C, Solvent induced track sensitization, role of amines. Nucl Instrum Methods B107, 393–396 (1996)

    Article  Google Scholar 

  48. Apel PYu, Angert N, Brüchle W, Hermann H, Kampschulte U, Klein P, Kravets LI, Oganessian YuTs, Remmert G, Spohr R, Steckenreiter T, Trautmann Ch, Vetter J, Solvent induced sensitization, extraction of oligomers. Nucl Instrum Methods B86, 325–332 (1994)

    Article  CAS  Google Scholar 

  49. Apel PYu, Track regression effects in polyethylene terephthalate after sensitization. Instrum Exp Techn, translated from Pribory I Tekhnika Experimenta No 5, 71–75 (1992)

    Google Scholar 

  50. Steckenreiter Th, Dimethylformamid-Sensibilisierung latenter Teilchenspuren in Poly(ethylenterephthalat)-Folien. Diplomarbeit, TH Darmstadt (1994) (in German)

    Google Scholar 

  51. Zachmann HG, Kinetik der Kristallisation von gequollenem Polyethylenterephthalat. Makromol Chem 118, 189 pp. (1968) (in German)

    Google Scholar 

  52. Tamada M, Yoshida M, Asano H, Omichi H, Kakakai R, Spohr R, Vetter J, Thermo-response of ion track pores in copolymer films of methacryloyl_Lalanine methyl ester and diethyleneglycol-bis-allylcarbonate. Polymer 33, 3169–3172 (1992)

    Article  CAS  Google Scholar 

  53. Torrisi L, Percolla R, Ion beam processing of polyvinylidene fluoride. Nucl Instrum Methods B117, 387–391 (1996)

    Article  CAS  Google Scholar 

  54. Renardy M, Planck H, Trauter J, Zschocke P, Siebers U, Zecorn T, Federlin K, In: Heime G, Soltész U, Lee AJC (eds.): Clinical implant material. Adv Biomater 9, 633 (1990)

    Google Scholar 

  55. Gebel G, Ottomani E, Allegrand JJ, Betz N, LeMoel A, Structural study of polystyrene grafted in irradiated polyvinylidene fluoride thin films Nucl In-strum Methods B105, 145–149 (1995)

    CAS  Google Scholar 

  56. Duraud JP, Le Moel A, Le Gressus C, Aging of fluoropolymers irradiated by X-rays, low energy electrons and enegetic heavy ions. Radiat Eff 98, 151–157 (1986)

    Article  CAS  Google Scholar 

  57. Friese K, Plack V, Mehnert R, Angert N, Spohr R, Trautmann Ch, Radiation-induced grafting of styrene onto polyimide ion track membranes. Nucl Instrum Methods B105, 139–144 (1995)

    Article  CAS  Google Scholar 

  58. Martin CR, Nanomaterials: A membrane-based synthetic approach. Science 266, 1961–1966 (1994)

    Article  CAS  Google Scholar 

  59. Petrov A, Production of micro-and nanoelectrotechnic devices by help of ion tracks in insulators. PhD Thesis, Fernuniversität Hagen (2004)

    Google Scholar 

  60. Neumann R, Ion induced modifications in solids: basic aspects and applications in nanoscience. 21’ Int. Conf. on Nuclear Tracks in Solids, New Delhi, 21–25 Oct. 2002

    Google Scholar 

  61. Singh S, Sinha D, Srivastava A, Ghosh S, Dwivedi KK, Some chemical applications of nuclear track microfilters, to be published, 2002

    Google Scholar 

  62. Chin VI, Ozkan M, Bhatia S, Rapid three-dimensional arraying of single cells, Proc MRS Boston, 27.11.-1.12. 2001, Contribution Y5. 8

    Google Scholar 

  63. Jaffrin MY, Innovative processes for membrane plasma separation. J Membr Sci 44, 115–129 (1989)

    Article  CAS  Google Scholar 

  64. Barber DJW, Thomas JK, Radiat Res 74, 51–65 (1978)

    Article  CAS  Google Scholar 

  65. Schön W, Gärtner H, Kraft G, Radiat Envir Biophysics 33, 233–242 (1994)

    Article  Google Scholar 

  66. Leyko W, Bartosz G, J Radiat Biol 49, 743–770 (1986)

    Article  CAS  Google Scholar 

  67. J Guillet, Polymer Photophysics and Photochemistry: An Introduction to the Study of Photoprocesses in Macromolecules. Cambridge University Press, Cambridge, 1985

    Google Scholar 

  68. Remmert G, Transporteigenschaften and Geometrie von Schwerionenspuren in Polymerfolien. PhD. Thesis, Johann Wolfgang Goethe Universität, Frankfurt am Main (1994) (in German)

    Google Scholar 

  69. Komaki Y, Growth of fine holes by the chemical etching of fission tracks in polyvinylidene fluoride. Nucl Tracks 3, 33–44 (1979)

    Article  CAS  Google Scholar 

  70. Packard RE, Pekola SP, Price PB, Spohr RNR, Westmacott KH, Zhu YQ, GSI Scientific Report 1985, Darmstadt 1986

    Google Scholar 

  71. Backmeister GU, Enge W, Observation of the latent track structure in polymers by diffusion measurements. Nucl Instrum Methods B131, 643–70 (1997)

    Google Scholar 

  72. Turowski T, Schockwellenmodell zur Beschreibung des ionendichteabhängigen Diffusionsverhaltens bestrahlter Polymerfolien. PhD. Thesis, ChristianAlbrechts-Universität Kiel (2001) (in German)

    Google Scholar 

  73. Fink D, Biersack JP, Compactation of polymers by energetic ions. HMI Berlin, internal report (1994 and 1999), forwarded in 1999 to Turowski T. as the basis of his PhD. Thesis, see Ref. [72]

    Google Scholar 

  74. Sudowe R, Penzhorn RD, Vater P, Abu-Jaber S, Brandt R, Filters with small holes (d 1 gm) as a tool to separate gases. Radiat Meas 28, 811–816 (1997)

    Article  CAS  Google Scholar 

  75. Ovchinnikov V.V., Seleznev V.D., Surguchev V.V., Tokmantsev V.I. Investigation of separation efficiency for gases on nuclear membrane with hyperfine pores. J Membr Sci 55, 311–323 (1991)

    Article  CAS  Google Scholar 

  76. Ghosh S, Klett R, Fink D, Dwivedi KK, Vacík J, Hnatowicz V, Cervenä J, On the penetration of aqueous solutions into some pristine and heavy-ion irradiated polymers. Radiat Phys Chem 55, 271–284 (1999)

    Article  CAS  Google Scholar 

  77. Fink D, Klett R, Latent tracks in polymers for future use in nanoelectronics, an overview about the present state-of-the-art. Braz J Phys 25, 54–75 (1995)

    CAS  Google Scholar 

  78. Deen WM, Hindered transport of large molecules in liquid-filled pores. AIChE Journal 33, 1409–1425 (1987)

    Article  CAS  Google Scholar 

  79. Wolf A, Reber N, Apel PYu, Fischer BE, Spohr R, Electrolyte transport in charged single ion track capillarities. Nucl Instrum Methods B105, 291–293 (1995)

    Article  CAS  Google Scholar 

  80. Grossmann PD, Colburn JC, Capillary Electrophoresis: Theory and Practice. Academic Press Incl., San Diego (1992)

    Google Scholar 

  81. Deamer D, Westphal A, Progress towards the development of a rapid DNA se-. quencer using etched relativistic ion tracks. Proc of the Workshop on European Network on Ion Track Technology, Caen, France, 24–26. Feb. 2002

    Google Scholar 

  82. Baur D, Apel PYu, Korchev YE, Müller C, Siwy Z, Spohr H, Spohr R, Surface gel in ion track etching — observations and consequences. Proc of the Workshop on European Network on Ion Track Technology, Caen, France, 24–26. Feb. 2002

    Google Scholar 

  83. Apel PYu, Korchev YuE, Siwy Z, Spohr R, Yoshida M, Diode-like single-ion track membrane prepared by electro-stop**. Nucl Instrum Methods B184, 337–346 (2001), and references therein, and

    Google Scholar 

  84. Apel PYu, Tuchkin SV, Gotlib VA, Lebedeva NE, Lev AA, Rectification property of conical track etched pores and an explanation of the change of rectifying direction at some conditions. Proc of the Workshop on European Network on Ion Track Technology, Caen, France, 24–26. Feb. 2002

    Google Scholar 

  85. Berezkin VV, Kiseleva OA, Nechaev AN, Sobolev VD, Churaev NV. Kolloidn Zh 56, 319–325 (1994) (in Russian)

    CAS  Google Scholar 

  86. Marquet C, Buguin A, Talini L, Silberzan R, Rectified motion of colloids in asymmetrically structured channels. Phys Rev Lett 88, 168301/1–4 (2002)

    Google Scholar 

  87. Siwy Z. Fulinski, Fabrication of a synthetic nanopore ion pump. Phys Rev Lett 89, 198103–1–198103–4 (2002)

    Google Scholar 

  88. see, e.g., Liu DS, Astumian RD, Tsong TY, J Biolog Chem 265, 7260 (1990)

    Google Scholar 

  89. Pintauro PN, Verbrugge MW, The electric-potential profile in ion-exchange membrane pores. J Membr Sci 44, 197–212 (1989)

    Article  CAS  Google Scholar 

  90. Pasternak CA, Alder M, Apel PYu, Bashford CL, Korchev YE, Lev AA, Rostovtseva TK, Zhitariuk NI, Model pores for biological membranes: The properties of track-etched membranes. Nucl Instrum Methods B195, 332–334 (1995)

    Google Scholar 

  91. Pasternak CA, Bashford CL, Korchev YE, Rostovtseva TK, Lev AA. In: Colloids Surf, A: Physicochem Eng Aspects 77, 119 (1993)

    Google Scholar 

  92. Lev AA, Korchev YE, Rostovtseva TK, Bashford CL, Edmonds DT, Pasternak CA, Proc Royal Soc B252, 187–192 (1993)

    Article  CAS  Google Scholar 

  93. Martin CR, Nishizawa M, Jirage K, Kang M, Lee SB, Controlling transport selectivity in gold nanotubule membranes, Adv Mater 13, 1351–1362 (2001)

    Article  CAS  Google Scholar 

  94. Jirage KB, Hulteen JC, Martin CR, Effect of thiol chemisorption on the transport properties of gold nanotubule menbranes. Anal Chem 71, 4913–4918 (1999)

    Article  CAS  Google Scholar 

  95. Fink D, Müller M, Szimkowiak P, Klett R, Vacík J, Hnatowicz V, Chadderton LT, Rutherford backscattering of laterally heterogeneous structures: the determination of radial density distributions in ion tracks in collodium. Nucl Instrum Methods B134, 87–97 (1998)

    Article  CAS  Google Scholar 

  96. Fink D, Müller M, Vacik J, Cervenâ. J, Hnatowicz V, Nanotomographic examinations of etched and latent ion tracks by ion energy loss spectrometry. Appl Phys A68, 87–91 (1999)

    CAS  Google Scholar 

  97. Stolterfoht N, Bremer JH, Hoffmann V, Fink D, Petrov A, Sulik B, Transmission of 3 keV Ne+ through nanocapillaries etched in polymer foils: evidence for capillary guiding. Phys Rev Lett 88, 133201/1–4 (2002)

    Google Scholar 

  98. Stolterfoht N, Hellhammer R, Pesic ZD, Hoffmann V, Bundesmann J, Petrov A, Fink D, Sulik B. Guiding of Ne’+ ions through nanocapillaries in a PET polymer: dependence on the capillary diameter. Presented at the Conf. IPMM03, Sendai, Japan, May 2003

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fink, D., Hnatowicz, V., Apel, P.Y. (2004). Transport Processes in Tracks. In: Transport Processes in Ion-Irradiated Polymers. Springer Series in Materials Science, vol 65. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10608-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10608-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05894-3

  • Online ISBN: 978-3-662-10608-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation