Regulation of Spemann’s Organizer Formation

  • Chapter
The Vertebrate Organizer
  • 150 Accesses

Abstract

Patterning the embryonic body relies on the complex integration of molecular information, normally involving a large number of signaling pathways. Activation of a specific pathway can determine the character of a specific region, cell or tissue, such as the embryonic organizer, notochord cells or neuronal tissue. In recent years, it has been demonstrated that the function of some signaling pathways amounts to negative regulation of other genes or factors, thereby constraining their effect both temporally and spatially. The timing and position of such regulators is crucial for the synchronization of developmental processes and the correct organization of the future organs and tissues of the body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Agius E, Oelgeschlager M, Wessely O, Kemp C, De Robertis EM (2000) Endodermal Nodal-related signals and mesoderm induction in Xenopus. Development 127: 1173–1183

    PubMed  CAS  Google Scholar 

  • Bhushan A, Chen Y, Vale W (1998) Smad7 inhibits mesoderm formation and promotes neural cell fate in Xenopus embryos. Dev Biol 200: 260–268

    Article  PubMed  CAS  Google Scholar 

  • Boterenbrood EC, Nieuwkoop PD (1973) The formation of the mesoderm in Urodelan amphibians. V. Its regional induction by the endoderm. Roux’s Arch 173: 319–332

    Article  Google Scholar 

  • Brannon M, Kimelman D (1996) Activation of Siamois by the Wnt pathway. Dev Biol 180: 344–347

    Article  PubMed  CAS  Google Scholar 

  • Brannon M, Gomperts M, Sumoy L, Moon RT, Kimelman D (1997) A 13-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. Genes Dev 11: 2359–2370

    Article  PubMed  CAS  Google Scholar 

  • Carnac G, Kodjabachian L, Gurdon JB, Lemaire P (1996) The homeobox gene Siamois is a target of the Wnt dorsalisation pathway and triggers organiser activity in the absense of mesoderm. Development 122: 3055–3065

    PubMed  CAS  Google Scholar 

  • Cho KWY, Blumberg B, Steinbeisser H, De Robertis EM (1991) Molecular nature of Spemann’s organizer: the role of the Xenopus homeobox gene goosecoid. Cell 67: 1111–1120

    Article  PubMed  CAS  Google Scholar 

  • Christian JL, Moon RT (1993) Interactions between Xwnt-8 and Spemann organizer signaling pathways generate dorsoventral pattern in the embryonic mesoderm of Xenopus. Genes Dev 7: 13–28

    Article  PubMed  CAS  Google Scholar 

  • Clement JH, Fettes P, Knöchel S, Lef J, Knöchel W (1995) Bone morphogenetic protein 2 in the early development of Xenopus laevis. Mech Dev 52: 357–370

    Article  PubMed  CAS  Google Scholar 

  • Dale L, Howes G, Price BMJ, Smith JC (1992) Bone morphogenetic protein 4: a ventralizing factor in early Xenopus development. Development 115: 573–585

    PubMed  CAS  Google Scholar 

  • Darken RS, Wilson PA (2001) Axis induction by wnt signaling: target promoter responsiveness regulates competence. Dev Biol 234: 42–54

    Article  PubMed  CAS  Google Scholar 

  • Darras S, Marikawa Y, Elinson RP, Lemaire P (1997) Animal and vegetal pole cells of early Xenop us embryos respond differently to maternal dorsal determinants: implications for the patterning of the organiser. Development 124: 4275–4286

    PubMed  CAS  Google Scholar 

  • De Robertis EM (1995) Dismantling the organizer. Nature 374: 407–408

    Article  PubMed  Google Scholar 

  • De Robertis EM, Larrain J, Oelgeschläger M, Wessely O (2000) The establishment of Spemann’s organizer and patterning of the vertebrate embryo. Nature Rev Genet 1: 171–181

    Article  PubMed  Google Scholar 

  • Elinson RP, Rowning B (1988) A transient array of parallel microtubules in frog eggs: potential tracks for a cytoplasmic rotation that specifies the dorso-ventral axis. Dev Biol 128: 185–197

    Article  PubMed  CAS  Google Scholar 

  • Epstein M, Pillemer G, Yelin R, Yisraeli JK, Fainsod A (1997) Patterning of the embryo along the anterior-posterior axis: the role of the caudal genes. Development 124: 3805–3814

    PubMed  CAS  Google Scholar 

  • Fagotto F, Guger K, Gumbiner BM (1997) Induction of the primary dorsalizing center in Xenopus by the Wnt/GSK/beta-catenin signaling pathway, but not by Vgl, Activin or Noggin. Development 124: 453–460

    PubMed  CAS  Google Scholar 

  • Fainsod A, Steinbeisser H, De Robertis EM (1994) On the function of BMP-4 in patterning the marginal zone of the Xenopus embryo. EMBO J 13: 5015–5025

    PubMed  CAS  Google Scholar 

  • Fan MJ, Sokol SY (1997) A role for siamois in Spemann organizer formation. Development 124: 2581–2589

    PubMed  CAS  Google Scholar 

  • Fan MJ, Gruning W, Walz G, Sokol SY (1998) Wnt signaling and transcriptional control of Siamois in Xenopus embryos. Proc Natl Acad Sci USA 95: 5626–5631

    Article  PubMed  CAS  Google Scholar 

  • Faure S, Lee MA, Keller T, ten Dijke P, Whitman M (2000) Endogenous patterns of TGFbeta superfamily signaling during early Xenopus development. Development 127: 2917–2931

    PubMed  CAS  Google Scholar 

  • Friedle H, Knöchel W (2002) Cooperative interaction of Xvent-2 and GATA-2 in the activation of the ventral homeobox gene Xvent-1B. J Biol Chem 277: 23872–23881

    Article  PubMed  CAS  Google Scholar 

  • Frisch A, Wright CV (1998) XBMPRII, a novel Xenopus type II receptor mediating BMP signaling in embryonic tissues. Development 125: 431–442

    PubMed  CAS  Google Scholar 

  • Gawantka V, Delius H, Hirschfeld K, Blemenstock C, Niehrs C (1995) Antagonizing the Spemann organizer: role of the homeobox gene Xvent-1. EMBO J 14: 6268–6279

    PubMed  CAS  Google Scholar 

  • Gerhart J, Danilchik M, Doniach T, Roberts S, Rowning B, Stewart R (1989) Cortical rotation of the Xenopus egg: consequences for the anteroposterior pattern of embryonic dorsal development. Development [Suppl] 107: 37–51

    Google Scholar 

  • Gimlich RL (1986) Acquisition of developmental autonomy in the equatorial region of the Xenopus embryo. Dev Biol 115: 340–352

    Article  PubMed  CAS  Google Scholar 

  • Graff JM (1997) Embryonic patterning: to BMP or not to BMP, that is the question. Cell 89: 171–174

    Article  PubMed  CAS  Google Scholar 

  • Graff JM, Thies RS, Song JJ, Celeste AJ, Melton DA (1994) Studies with a Xenopus BMP receptor suggest that ventral mesoderm-inducing signals override dorsal signals in vivo. Cell 79: 169–179

    Article  PubMed  CAS  Google Scholar 

  • Green JBA, New HV, Smith JC (1992) Responses of embryonic Xenopus cells to activin and FGF are separated by multiple dose thresholds and correspond to distinct axes of the mesoderm. Cell 71: 731–739

    Article  PubMed  CAS  Google Scholar 

  • Guger KA, Gumbiner BM (1995) β-Catenin has wnt-like activity and mimics the Nieuwkoop signaling center in Xenopus dorsal-ventral patterning. Dev Biol 172: 115–125

    Google Scholar 

  • Hamilton FS, Wheeler GN, Hoppler S (2001) Difference in XTcf-3 dependency accounts for change in response to beta-catenin-mediated Wnt signalling in Xenopus blastula. Development 128: 2063–2073

    PubMed  CAS  Google Scholar 

  • Harland R, Gerhart J (1997) Formation and function of Spemann’s organizer. Annu Rev Cell Dev Biol 13: 611–667

    Article  PubMed  CAS  Google Scholar 

  • Hata A, Lagna G, Massague J, Hemmati-Brivanlou A (1998) Smad6 inhibits BMP/Samdl signaling by specifically competing with the Samd4 tumor suppressor. Genes Dev 12: 186–197

    Article  PubMed  CAS  Google Scholar 

  • Hawley SHB, Wünnenberg-Stapleton K, Hashimoto C, Laurent MN, Watabe T, Blumberg BW, Cho KWY (1995) Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction. Genes Dev 9: 2923–2935

    Article  PubMed  CAS  Google Scholar 

  • Heasman J, Crawford A, Goldstone K, Garner-Hamrick P, Gumbiner B, McCrea P, Kintner C, Yoshida-Noro C, Wylie C (1994) Overexpression of cadherins, and underexpression of b-catenin inhibit dorsal mesoderm induction in early Xenopus embryos. Cell 79: 791–803

    Article  PubMed  CAS  Google Scholar 

  • Hemmati-Brivanlou A, Melton DA (1992) A truncated activin receptor inhibits mesoderm induction and formation of axial structures in Xenopus embryos. Nature 359: 609–614

    Article  PubMed  CAS  Google Scholar 

  • Hemmati-Brivanlou A, Thomsen GH (1995) Ventral mesodermal patterning in Xenopus embryos: expression patterns and activities of BMP-2 and BMP-4. Dev Genet 17: 78–89

    Article  PubMed  CAS  Google Scholar 

  • Holowacz T, Elinson RP (1995) Properties of the dorsal activity found in the vegetal cortical cytoplasm of Xenopus eggs. Development 121: 2789–2798

    PubMed  CAS  Google Scholar 

  • Houliston E, Elinson RP (1991) Patterns of microtubule polymerization relating to cortical rotation in Xenopus laevis eggs. Development 112: 107–117

    PubMed  CAS  Google Scholar 

  • Hsu DR, Economides AN, Wang X, Eimon PM, Harland RM (1998) The Xenopus dorsalizing factor Gremlin identifies a novel family of secreted proteins that antagonize BMP activities. Mol Cell 1: 673–683

    Article  PubMed  CAS  Google Scholar 

  • Hwang YS, Seo JJ, Cha SW, Lee HS, Lee SY, Roh DH, Kung Hf HF, Kim J, Ja Park M (2002) Antimorphic PV.1 causes secondary axis by inducing ectopic organizer. Biochem Biophys Res Commun 292: 1081–1086

    Article  PubMed  CAS  Google Scholar 

  • Jones CM, Lyons KM, Lapan PM, Wright CVE, Hogan BLM (1992) DVR-4 (bone morphogenetic protein-4) as a posterior-ventralizing factor in Xenopus mesoderm induction. Development 115: 639–647

    PubMed  CAS  Google Scholar 

  • Jones EA, Woodland HR (1987) The development of the animal cap cells in Xenopus: a measure of the start of animal cap competence to form mesoderm. Development 101: 557–563

    Google Scholar 

  • Kageura H (1997) Activation of dorsal development by contact between the cortical dorsal determinant and the equatorial core cytoplasm in eggs of Xenopus laevis. Development 124: 1543–1551

    PubMed  CAS  Google Scholar 

  • Kao RK, Elinson RP (1988) The entire mesodermal mantle behaves as Spemann’s organizer in dorsoanterior enhanced Xenopus laevis embryos. Dev Biol 127: 64–77

    Article  PubMed  CAS  Google Scholar 

  • Kessler DS (1997) Siamois is required for formation of Spemann’s organizer. Proc Natl Acad Sci USA 94: 13017–13022

    Article  PubMed  CAS  Google Scholar 

  • Klein PS, Melton DA (1996) A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci USA 93: 8455–8459

    Article  PubMed  CAS  Google Scholar 

  • Kodjabachian L, Lemaire P (2001) Siamois functions in the early blastula to induce Spemann’s organiser. Mech Dev 108: 71–79

    Article  PubMed  CAS  Google Scholar 

  • Kofron M, Demel T, Xanthos J, Lohr J, Sun B, Sive H, Osada S, Wright C, Wylie C, Heasman J (1999) Mesoderm induction in Xenopus is a zygotic event regulated by maternal VegT via TGFbeta growth factors. Development 126: 5759–5770

    PubMed  CAS  Google Scholar 

  • Kolm PJ, Sive HL (1995) Efficient hormone-inducible protein function in Xenopus laevis. Dev Biol 171: 267–272

    Article  PubMed  CAS  Google Scholar 

  • Kurata T, Nakabayashi J, Yamamoto TS, Mochii M, Ueno N (2001) Visualization of endogenous BMP signaling during Xenopus development. Differentiation 67: 33–40

    Article  PubMed  CAS  Google Scholar 

  • Ladher R, Mohun TJ, Smith JC, Snape AM (1996) Xom: a Xenopus homeobox gene that mediates the early effects of BMP-4. Development 122: 2385–2394

    Google Scholar 

  • Larabell CA, Torres M, Rowning BA, Yost C, Miller JR, Wu M, Kimelman D, Moon RT (1997) Establishment of the dorso-ventral axis in Xenopus embryos is presaged by early asymmetries in beta-catenin that are modulated by the Wnt signaling pathway. J Cell Biol 136: 1123–1136

    Article  PubMed  CAS  Google Scholar 

  • Laurent MN, Blitz IL, Hashimoto C, Rothbacher U, Cho KW (1997) The Xenopus homeobox gene twin mediates Wnt induction of goosecoid in establishment of Spemann’s organizer. Development 123: 4905–4916

    Google Scholar 

  • Lemaire P, Gurdon JB (1994) A role for cytoplasmic determinants in mesoderm patterning: cell-autonomous activation of the goosecoid and Xwnt-8 genes along the dorsoventral axis of early Xenopus embryos. Development 120: 1191–1199

    PubMed  CAS  Google Scholar 

  • Lemaire P, Kodjabachian L (1996) The vertebrate organizer: structure and molecules. Trends Genet 12: 525–531

    Article  PubMed  CAS  Google Scholar 

  • Lemaire P, Garret N, Gurdon JB (1995) Expression cloning of siamois, a Xenopus homeobox gene expressed in dorsal vegetal cells of blastulae and able to induce a complete secondary axis. Cell 81: 85–94

    Article  PubMed  CAS  Google Scholar 

  • Lettice LA, Slack JMW (1993) Properties of the dorsalizing signal in gastrulae of Xenopus laevis. Development 117: 263–271

    PubMed  CAS  Google Scholar 

  • Levy V, Marom K, Zins S, Koutsia N, Yelin R, Fainsod A (2002) The Competence of marginal zone cells to become Spemann’s organizer is controlled by Xcad2. Dev Biol 248: 40–51

    Article  PubMed  CAS  Google Scholar 

  • Luo T, Matsuo-Takasaki M, Lim JH, Sargent TD (2001) Differential regulation of Dlx gene expression by a BMP morphogenetic gradient. Int J Dev Biol 45: 681–684

    PubMed  CAS  Google Scholar 

  • Maeda R, Kobayashi A, Sekine R, Lin JJ, Kung H, Maeno M (1997) Xmsx-1 modifies mesodermal tissue pattern along dorsoventral axis in Xenopus laevis embryo. Development 124: 2553–2560

    PubMed  CAS  Google Scholar 

  • Mead PE, Hemmati-Brivanlou I, Kelley CM, Zon LI (1996) BMP-4-responsive regulation of dorsal-ventral patterning by the homeobox protein Mix.l. Nature 382: 357–360

    Article  PubMed  CAS  Google Scholar 

  • Melby AE, Clements WK, Kimelman D (1999) Regulation of dorsal gene expression in Xenopus by the ventralizing homeodomain gene Vox. Dev Biol 211: 293–305

    Article  PubMed  CAS  Google Scholar 

  • Miller JR, Rowning BA, Larabell CA, Yang-Snyder JA, Bates RL, Moon RT (1999) Establishment of the dorsal-ventral axis in Xenopus embryos coincides with the dorsal enrichment of dishevelled that is dependent on cortical rotation. J Cell Biol 146: 427–437

    Article  PubMed  CAS  Google Scholar 

  • Miyama K, Yamada G, Yamamoto TS, Takagi C, Miyado K, Sakai M, Ueno N, Shibuya H (1999) A BMP-inducible gene, dlx5, regulates osteoblast differentiation and mesoderm induction. Dev Biol 208: 123–133

    Article  PubMed  CAS  Google Scholar 

  • Molenaar M, van de Wetering M, Oosterwegel M, Peterson-Maduro J, Godsave S, Korinek V, Roose J, Destree O, Clevers H (1996) XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell 86: 391–399

    Article  PubMed  CAS  Google Scholar 

  • Nakayama T, Snyder MA, Grewal SS, Tsuneizumi K, Tabata T, Christian JL (1998) Xenopus Smad8 acts downstream of BMP-4 to modulate its activity during vertebrate embryonic patterning. Development 125: 857–867

    Google Scholar 

  • Nieuwkoop PD, Faber J (1967) Normal table of Xenopus laevis (Daudin). North-Holland Publishing, Amsterdam

    Google Scholar 

  • Nishimatsu S, Suzuki A, Shoda A, Murakami K, Ueno N (1992) Genes for bone morphogenetic proteins are differentially transcribed in early amphibian embryos. Biochem Biophys Res Commun 186: 1487–1495

    Article  PubMed  CAS  Google Scholar 

  • Onichtchouk D, Gawantka V, Dosch. R, Delius H, Hirschfeld K, Blumenstock C, Niehrs C (1996) The Xvent-2 homeobox gene is part of the BMP-4 signalling pathway controling dorsoventral patterning of Xenopus mesoderm. Development 122: 3045–3053

    CAS  Google Scholar 

  • Onichtchouk D, Glinka A, Niehrs C (1998) Requirement for Xvent-1 and Xvent-2 gene function in dorsoventral patterning of Xenopus mesoderm. Development 125: 1447–1456

    PubMed  CAS  Google Scholar 

  • Papalopulu N, Kintner C (1996) A Xenopus gene, Xbr-1, defines a novel class of homeobox genes and is expressed in the dorsal ciliary margin of the eye. Dev Biol 174: 104–114

    Article  PubMed  CAS  Google Scholar 

  • Piccolo S, Agius E, Leyns L, Bhattacharyya S, Grunz H, Bouwmeester T, De Robertis EM (1999) The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397: 707–710

    Article  PubMed  CAS  Google Scholar 

  • Pillemer G, Epstein M, Blumberg B, Yisraeli JK, De Robertis EM, Steinbeisser H, Fainsod A (1998a) Nested expression and sequential downregulation of the Xenopus caudal genes along the anterior-posterior axis. Mech Dev 71: 193–196

    Article  PubMed  CAS  Google Scholar 

  • Pillemer G, Yelin R, Epstein M, Gont L, Frumkin Y, Yisraeli JK, Steinbeisser H, Fainsod A (1998b) The Xcad-2 gene can provide a ventral signal independent of BMP-4. Mech Dev 74: 133–143

    Article  PubMed  CAS  Google Scholar 

  • Rowning BA, Wells J, Wu M, Gerhart JC, Moon RT, Larabell CA (1997) Microtubule-mediated transport of organelles and localization of beta-catenin to the future dorsal side of Xenopus eggs. Proc Natl Acad Sci USA 94: 1224–1229

    Article  PubMed  CAS  Google Scholar 

  • Sasai Y, Lu B, Steinbeisser H, Geissert D, Gont LK, De Robertis EM (1994) Xenopus chord in: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79:779–790

    Google Scholar 

  • Sasai Y, Lu B, Steinbeisser H, De Robertis EM (1995) Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature 376: 333–336

    Article  PubMed  CAS  Google Scholar 

  • Schmidt JE, von Dassow G, Kimelman D (1996) Regulation of dorsal-ventral patterning: the ventralizing effects of the novel Xenopus homeobox gene Vox. Development 122: 1711–1721

    PubMed  CAS  Google Scholar 

  • Schneider S, Steinbeisser H, Warga RM, Hausen P (1996) Beta-catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos. Mech Dev 57: 191–198

    Article  PubMed  CAS  Google Scholar 

  • Schohl A, Fagotto F (2002) Beta-catenin, MAPK and Smad signaling during early Xenopus development. Development 129: 37–52

    PubMed  CAS  Google Scholar 

  • Shapira E, Marom K, Yelin R, Levy A, Fainsod A (1999) A role for the homeobox gene Xvex-1 as part of the BMP-4 ventral signaling pathway. Mech Dev 86: 99–111

    Article  PubMed  CAS  Google Scholar 

  • Shapira E, Marom K, Levy V, Yelin R, Fainsod A (2000) The Xvex-1 antimorph reveals the temporal competence for organizer formation and an early role for ventral homeobox genes. Mech Dev 90: 77–87

    Article  PubMed  CAS  Google Scholar 

  • Slack JMW, Tannahill D (1992) Mechanism of anteroposterior axis specification in vertebrates. Lessons from the amphibians. Development 114: 285–302

    PubMed  CAS  Google Scholar 

  • Smith WC, Harland RM (1991) Injected Xwnt-8 RNA acts early in Xenopus embryos to promote formation of a vegetal dorsalizing center. Cell 67: 753–765

    Article  PubMed  CAS  Google Scholar 

  • Smith WC, Harland RM (1992) Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70: 829–840

    Article  PubMed  CAS  Google Scholar 

  • Smith WC, McKendry R, Ribisi SJ, Harland RM (1995) A nodal-related gene defines a physical and functional domain within the Spemann organizer. Cell 82: 37–46

    Article  PubMed  CAS  Google Scholar 

  • Sokol S, Christian JL, Moon RT, Melton DA (1991) Injected Wnt RNA induces a complete body axis in Xenopus embryos. Cell 67: 741–752

    Article  PubMed  CAS  Google Scholar 

  • Spemann H, Mangold H (1924) Uber Induktion von Embryonalanlagen durch Implantation Artfremder Organisatoren. Roux’ Arch Entw Mech 100: 599–638

    Google Scholar 

  • Steinbach OC, Wolffe AP, Rupp RA (1997) Somatic linker histones cause loss of mesodermal competence in Xenopus. Nature 389: 395–399

    Article  PubMed  CAS  Google Scholar 

  • Stewart-Savage J, Grey RD, Elinson RP (1991) Polarity of the surface and cortex of the amphibian egg from fertilization to first cleavage. J Electron Microsc Tech 17: 369–383

    Article  PubMed  CAS  Google Scholar 

  • Suzuki A, Thies RS, Yamaji N, Song JJ, Wozney JM, Murakami K, Ueno N (1994) A truncated bone morphogenetic protein receptor affects dorsal-ventral patterning in the early Xenopus embryo. Proc Natl Acad Sci USA 91: 10255–10259

    Article  PubMed  CAS  Google Scholar 

  • Sykes TG, Rodaway ARF, Walmsley ME, Patient RK (1998) Suppression of GATA factor activity causes axis duplication in Xenopus. Development 125: 4595–4605

    PubMed  CAS  Google Scholar 

  • Tidman-Ault K, Dirksen M-L, Jamrich M (1996) A novel homeobox gene PV.1 mediates induction of ventral mesoderm in Xenopus embryos. Proc Natl Acad Sci USA 93: 6415–6420

    Article  Google Scholar 

  • Vincent JP, Gerhart JC (1987) Subcortical rotation in Xenopus eggs: an early step in embryonic axis specification. Dev Biol 123: 526–539

    Article  PubMed  CAS  Google Scholar 

  • Vincent JP, Scharf SR, Gerhart JC (1987) Subcortical rotation in Xenopus eggs: a preliminary study of its mechanochemical basis. Cell Motil Cytoskeleton 8: 143–154

    Article  PubMed  CAS  Google Scholar 

  • Wylie C, Kofron M, Payne C, Anderson R, Hosobuchi M, Joseph E, Heasman J (1996) Maternal Ocatenin establishes a “dorsal signal” in early Xenopus embryos. Development 122: 2987–2996

    PubMed  CAS  Google Scholar 

  • Xanthos JB, Kofron M, Tao Q, Schaible K, Wylie C, Heasman J (2002) The roles of three signaling pathways in the formation and function of the Spemann organizer. Development 129: 4027–4043

    PubMed  CAS  Google Scholar 

  • Xu RH, Kim J, Taira M, Lin JJ, Zhang CH, Sredni D, Evans T, Kung HF (1997) Differential reg- ulation of neurogenesis by the two Xenopus GATA-1 genes. Mol Cell Biol 17: 436–443

    PubMed  CAS  Google Scholar 

  • Yuge M, Kobayakawa Y, Fujisue M, Yamana K (1990) A cytoplasmic determinant for dorsal axis formation in an early embryo of Xenopus laevis. Development 110: 1051–1056

    PubMed  CAS  Google Scholar 

  • Zon LI, Mather C, Burgess S, Bolce ME, Harland RM, Orkin SH (1991) Expression of GATA-binding proteins during embryonic development in Xenopus laevis. Proc Natl Acad Sci USA 88: 10642–10646

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fainsod, A., Levy, V. (2004). Regulation of Spemann’s Organizer Formation. In: Grunz, H. (eds) The Vertebrate Organizer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10416-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10416-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05732-8

  • Online ISBN: 978-3-662-10416-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation