Mitochondrial Genetics of the Budding Yeast Saccharomyces cerevisiae

  • Chapter
Genetics and Biotechnology

Part of the book series: The Mycota ((MYCOTA,volume 2))

  • 996 Accesses

Abstract

Mitochondria are indispensable constituents of all eukaryotic cells. They are responsible for a series of processes such as the tricarboxylic cycle, assembly of iron-sulfur clusters and the biosynthesis of a variety of metabolites. Their most important function is the supply of energy by oxidative phosphorylation. Mitochondria are complex double membrane-bound organelles with characteristic morphology and intercellular distribution. 79 Understanding the process of mitochondrial (mt) function and inheritance is possible only by identification and characterization of the molecular components involved. This article will give an overview of mt genetics of Saccharomyces cerevisiae (S. cerevisiae.). Due to the limited space, interesting aspects of mt transport or structure and function of introns will not be reviewed. The older literature can be found in a series of reviews by Dujon (1981), Evans (1983; in which all older reviews are compiled), Wilkie (1983), Attardi and Schatz (1988), Wolf and Del Giudice (1988), Grivell (1989), Bereiter-Hahn (1990), Bereiter-Hahn and Vöth (1994), Costanzo and Fox (1990), Pon and Schatz (1991), Bolotin-Fukuhara and Grivell (1992), Piskur (1994). More recent reviews are presented by Azpiroz and Butow (1995), Grivell (1995), Yaffe (1995, 1999a,b), Warren and Wickner (1996), Hermann and Shaw (1998), Lisowsky et al. (1999), Saraste (1999), Scheffler (2000), Jensen et al. (2000), Contamine and Picard (2000), Kurland and Andersson (2000), Catlett and Weisman (2000), Boldogh et al. (2001b). It should finally be mentioned that the book, Mitochondria, by Scheffler (1999) also provides a wealth of information for mt genetics of yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aiken Hobbs AE, Srinivasan M, McCaffery JM, Jensen RE (2001) Mmmlp, a mitochondrial outer membrane protein, is connected to mitochondrial DNA (mtDNA) nucleoids and required for mtDNA stability. J Cell Biol 152: 401–410

    Article  Google Scholar 

  • Alexandar I, Venkov P, Del Giudice A, Wolf K, Massardo DR, del Giudice L (2001) Protein overexport in a Saccharomyces cerevisiae mutant depends on mitochondrial genome integrity and function. Microb Res 156: 9–12

    Article  CAS  Google Scholar 

  • Antimonelli M, Altamura N, Benne R, Brennicke A, Cooper JM, D’ Elia D, Montalvo A, Pinto B, de Robertis M, Goli P, Knoop V, Lanave C, Lazowska J, Licciulli F, Malladi BS, Memeo F, Monnerot M, Pasimeni R, Pilbout S, Schapira AH, Sloof P, Saccone C (2000) MitBASE: a comprehensive and integrated mitochondrial DNA database. The present status. Nucleic Acids Res 28: 148–152

    Google Scholar 

  • Attardi G, Schatz G (1988) Biogenesis of mitochondria. Annu Rev Cell Biol 4: 290–335

    Article  Google Scholar 

  • Azpiroz R, Butow RA (1993) Patterns of mitochondrial sorting in yeast zygotes. Mol Biol Cell 4: 21–36

    PubMed  CAS  Google Scholar 

  • Azpiroz R, Butow RA (1995) Mitochondrial inheritance in yeast. Methods in Enzymology, vol 260. Academic Press, San Diego, pp 453–465

    Google Scholar 

  • Backer JS, Getz GS (1987) Identification of a new promoter within the tRNA gene cluster of the mitochondrial DNA of Saccharomyces cerevisiae. Nucleic Acids Res 15: 9309–9324

    Article  PubMed  CAS  Google Scholar 

  • Baldacci G, Bernardi G (1982) Replication origins are associated with transcription initiation sequences in the mitochondrial genome of yeast. EMBO J 1: 987–994

    PubMed  CAS  Google Scholar 

  • Baldacci G, Zennaro E (1987) Mitochondrial transcripts in glucose-repressed cells of Saccharomyces cerevisiae. Eur J Biochem 127: 411–416

    Article  Google Scholar 

  • Baldacci G, Coli Y, Faugeron-Fonty G, Goursot R, Huyard A, Levankim C, Mangin M, Marotta R, de Zamarocy M (1983) The origins of replication of the mitochon-drial genome of yeast. In: Nagley P, Linnane AW, Peacock WJ, Patemen JA (eds) Manipulation and expression of genes in eukaryotes. Academic Press, Sydney, pp 279–289

    Google Scholar 

  • Banroques J, Delahodde A, Jacq C (1986) A mitochondrial RNA maturase gene transferred to the yeast nucleus can control mitochondrial mRNA splicing. Cell 46: 937–944

    Article  Google Scholar 

  • Banroques J, Perea J, Jacq C (1987) Efficient splicing of two yeast mitochondrial introns controlled by nuclear-encoded maturase. EMBO J 6: 1085–1091

    PubMed  CAS  Google Scholar 

  • Becher D, Kricke J, Stein G, Lisowsky T (1999) A mutant for the yeast scERV1 gene displays a new defect in mitochondrial morphology and distribution. Yeast 15: 1171–1181

    Article  PubMed  CAS  Google Scholar 

  • Bendich AJ (1987) Problems and paradigms: why do chloroplasts and mitochondria contain so many copies of their genomes? BioEssays 6: 279–281

    Article  PubMed  CAS  Google Scholar 

  • Bereiter-Hahn J (1990) Behavior of mitochondria in the living call. Int Rev Cytol 122: 1–63

    Article  PubMed  CAS  Google Scholar 

  • Bereiter-Hahn J, Vöth M (1994) Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech 27: 198–219

    Article  PubMed  CAS  Google Scholar 

  • Berger KH, Yaffe MP (1996) Mitochondrial distribution and inheritance. Experientia 52: 1111–1116

    Article  PubMed  CAS  Google Scholar 

  • Berger KH, Yaffe MP (2000) Mitochondrial DNA inheritance in Saccharomyces cerevisiae. Trends Microbiol 8: 508–513

    Article  PubMed  CAS  Google Scholar 

  • Berger KH, Sogo LF, Yaffe MP (1997) Mdml2p, a component required for mitochondrial inheritance that is conserved between budding and fission yeast. J Cell Biol 136: 545–553

    Article  PubMed  CAS  Google Scholar 

  • Bingham CG, Nagley P (1983) A petite mitochondrial DNA segment arising in exceptionally high frequency in a mir mutant of Saccharomyces cerevisiae. Biochim Biophys Acta 740: 88–98

    Article  PubMed  CAS  Google Scholar 

  • Birky CW Jr (1978) Transmission genetics of mitochondria and chloroplasts. Annu Rev Genet 12: 471–512

    Article  PubMed  Google Scholar 

  • Birky CW Jr (2001) The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models. Annu Rev Genet 35: 125–148

    Article  PubMed  CAS  Google Scholar 

  • Biswas TK (1990) Control of mitochondrial gene expression in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 87: 9338–9342

    Article  PubMed  CAS  Google Scholar 

  • Biswas TK (1997) Unusual usage of noncomplementary dinucleotide primers by the yeast mitochondrial RNA polymerase. Arch Biochem Biophys 340: 250–256

    Article  PubMed  CAS  Google Scholar 

  • Biswas TK (1999) Nucleotide sequences surrounding the nonanucleotide promoter motif influence the activity of yeast mitochondrial promoter. Biochemistry 38: 9693–9703

    Article  PubMed  CAS  Google Scholar 

  • Biswas TK, Getz GS (1986a) A critical base in the yeast mitochondrial nonanucleotide promoter. J Biol Chem 261: 3927–3930

    PubMed  CAS  Google Scholar 

  • Biswas TK, Getz GS (1986b) Nucleotides flanking the promoter sequence influence transcription of the yeast promoter of the yeast mitochondrial gene coding for ATPase subunit 9. Proc Natl Acad Sci USA 83: 270–274

    Article  PubMed  CAS  Google Scholar 

  • Biswas TK, Getz GC (1988) Promoter-promoter interaction influencing transcription of the yeast mitochondrial gene, Olil, coding for ATPase subunit 9: cis and trans effects. J Biol Chem 263: 4844–4851

    PubMed  CAS  Google Scholar 

  • Biswas TK, Getz GC (1998) Position-specific inhibition of yeast mitochondrial transcription by a poly(T) sequence. J Mol Biol 275: 547–560

    Article  PubMed  CAS  Google Scholar 

  • Biswas TK, Sengupta P, Green R, Hakim P, Biswas B, Sen S (1985) Properties of mitochondrial DNA polymerase in mitochondrial DNA synthesis in yeast. Acta Biochim Polon 42: 317–324

    Google Scholar 

  • Biswas TK, Ticho B, Getz GC (1987) In vitro characterization of the yeast mitochondrial promoter using single-base substitution mutants. J Biol Chem 262: 13690–13696

    PubMed  CAS  Google Scholar 

  • Blanchard JL, Schmidt GW (1996) Mitochondrial DNA migration events in yeast and humans: integration by a common end-joining mechanism and alternative perspectives on nucleotide substitution patterns. Mol Biol Evol 13: 537–548

    Article  PubMed  CAS  Google Scholar 

  • Blanco L, Bernard A, Salas M (1991) MIP1 DNA polymerase of S. cerevisiae: structural similarity with the E. coli DNA polymerase I-type enzymes. Nucleic Acids Res 19: 955

    Article  PubMed  CAS  Google Scholar 

  • Bleazard W, McCaffery JM, King EJ, Bale S, Mozdy A, Tieu Q, Nunnari J, Shaw J (1999) The dynamin-related GTPase Dnml regulates mitochondrial fission in yeast. Nat Cell Biol 1: 298–304

    Article  PubMed  CAS  Google Scholar 

  • Boldogh I, Vojtov N, Karmon S, Pon LA (1998) Interaction between mitochondria and the actin cytoskeleton in budding yeast requires two integral mitochondrial outer membrane proteins, Mmmlp and MdmlOp. J Cell Biol 141: 1371–1381

    Google Scholar 

  • Boldogh IR, Yang HC, Nowakowski WD, Karmon SL, Hays LG, Yates JR 3rd, Pon LA (2001a) Arp2/3 complex and actin dynamics are required for actin-based mitochondrial motility in yeast. Proc Natl Acad Sci USA 98: 3162–3167

    Article  PubMed  CAS  Google Scholar 

  • Boldogh IR, Yang, HC, Pon LA (2001b) Mitochondrial inheritance in budding yeast. Traffic 2: 368–374

    Article  PubMed  CAS  Google Scholar 

  • Bolotin-Fukuhara M, Grivell LA (1992) Genetic approaches to the study of mitochondrial biogenesis in yeast. Antonie van Leeuwenhoek 62: 131–153

    Article  PubMed  CAS  Google Scholar 

  • Bonitz SG, Bertani R, Coruzzi G, Li M, Macino G, Nobrega FG, Nobrega MP, Thalenfeld BE, Tzagoloff A (1980) Codon recognition rules in yeast mitochondria. Proc Natl Acad Sci USA 77: 3167–3170

    Article  PubMed  CAS  Google Scholar 

  • Bonnefoy N, Fox TD (2001) Genetic transformation of Saccharomyces cerevisiae mitochondria. Methods Cell Biol 65: 381–396

    Article  PubMed  CAS  Google Scholar 

  • Bordonne R, Dirheimer G, Martin RP (1987) Transcription initiation and RNA procession of a yeast mitochondrial tRNA cluster. Nucleic Acids Res 15: 7381–7394

    Article  PubMed  CAS  Google Scholar 

  • Brasseur G, Brivet-Chevillotte P (1995) Characterization of mutations in the mitochondrial cytochrome b gene of Saccharomyces cerevisiae affecting the quinone reductase site (QN). Eur J Biochem 230: 1118–1124

    Article  PubMed  CAS  Google Scholar 

  • Bruel C, Manon S, Guerin M, Lemesle-Meunier D (1995) Decoupling of the bc, complex in S. cerevisiae; point mutations affecting the cytochrome b gene bring new information about the structural aspect of the proton translocation. J Bioenerg Biomembr 27: 527–539

    Article  PubMed  CAS  Google Scholar 

  • Burgess SM, Delannoy M, Jensen RE (1994) MMMI encodes a mitochondrial outer membrane protein essential for establishing and maintaining the structure of yeast mitochondria. J Cell Biol 126: 1375 1391

    Google Scholar 

  • Butow RA, Fox TD (1990) Organelle transformation–shoot first, ask questions later. Trends Biochem Sci 15: 465–472

    Article  PubMed  Google Scholar 

  • Butow RA, Strausberg RL, Vincent RD, Paulson LD, Perlman PS (1978) Analysis of structural genes on mitochondrial DNA. In: Bacila M, Horecker BL, Stoppani AOM (eds) Biochemistry and genetics of yeast. Academic Press, New York, pp 403–411

    Chapter  Google Scholar 

  • Butow RA, Docherty R, Parikh VS (1988) A path from mitochondria to the yeast nucleus. Philos Trans R Soc Ser B 319: 127–134

    Article  CAS  Google Scholar 

  • Butow RA, Henke RM, Moran JV, Belcher SM, Perlman PS (1996) Transformation of Saccharomyces cerevisiae mitochondria using the biolistic gun. Methods Enzymol 264: 265–278

    Article  PubMed  CAS  Google Scholar 

  • Cameron VL, Fox TD, Poyton RO (1989) Isolation and characterization of yeast strain carrying a mutation in the mitochondrial promoter for COX2. J Biol Chem 264: 13391–13394

    PubMed  CAS  Google Scholar 

  • Camougrand N, Pelissier P, Velours G, Guerin M (1995) NCA, a second nuclear gene required for the control of mitochondrial synthesis of subunits 6 and 8 of ATP synthase in Saccharomyces cerevisiae. J Mol Biol 147: 588–596

    Google Scholar 

  • Campbell CL, Thorsness PE (1998) Escape of mitochondrial DNA to the nucleus in ymel yeast is mediated by vacuolar-dependent turnover of abnormal mitochondrial compartments. J Cell Sci 111: 2455–2464

    PubMed  CAS  Google Scholar 

  • Campbell CL, Tanaka N, White KH, Thorsness PE (1994) Mitochondrial morphological and functional defects in yeast caused by ymel are suppressed by mutation of a 26 S protease subunit homologue. Mol Biol Cell 5: 899–905

    PubMed  CAS  Google Scholar 

  • Caron F, Jacq C, Rouviere-Yaniv J (1979) Characterization of a histone-like protein isolated from yeast mitochondria. Proc Natl Acad Sci USA 76: 4265–4269

    Article  PubMed  CAS  Google Scholar 

  • Catlett NL, Weisman LS (2000) Divide and multiply: organelle partitioning in yeast. Curr Opin Cell Biol 12: 509–516

    Article  PubMed  CAS  Google Scholar 

  • Certa U, Colavito-Shepanski M, Grunstein M (1984) Yeast may not contain histone H1: the only known “histone Hl-like” protein in Saccharomyces cerevisiae is a mitochondrial protein. Nucleic Acids Res 12: 7975–7985

    Article  PubMed  CAS  Google Scholar 

  • Cerveny KL, McCaffery JM, Jensen RE (2001) Division of mitochondria requires a novel DNM1-interacting protein, Net2p. Mol Biol Cell 12: 309–321

    PubMed  CAS  Google Scholar 

  • Chatterjee A, Singh KK (2001) Uracil-DNA glycosylasedeficient yeast exhibits a mitochondrial mutator phenotype. Nucleic Acids Res 29: 4935–4941

    Article  PubMed  CAS  Google Scholar 

  • Chelstowska A, Butow RA (1995) RTG genes in yeast that function in communication between mitochondria and the nucleus are also required for expression of genes encoding peroxisomal proteins. J Biol Chem 270: 18141–18146

    Google Scholar 

  • Chelstowska A, Liu Z, Jia Y, Amberg D, Butow RA (1999) Signalling between mitochondria and the nucleus regulates the expression of a new D-lactate dehydrogenase activity in yeast. Yeast 15: 1377–1391

    Article  PubMed  CAS  Google Scholar 

  • Chen XJ, Clark-Walker GD (2000) The petite mutation in yeasts: 50 years on. Int Rev Cytol 194: 197–238

    Article  PubMed  CAS  Google Scholar 

  • Chen XJ, Guan MX, Clark-Walker GD (1993) MGM101, a nuclear gene involved in maintenance of the mitochondrial genome in Saccharomyces cerevisiae. Nucleic Acids Res 21: 3473–3477

    Google Scholar 

  • Cherest H, Thomas D, Surdin-Kerjan Y (2000) Polyglutamylation of folate coenzyme is necessary for methionine biosynthesis and maintenance of intact mitochondrial genome in Saccharomyces cerevisiae. J Biol Chem 275: 14056–14063

    Article  PubMed  CAS  Google Scholar 

  • Chevilotte-Brivet P, Salon G, Meunier-Lemesle D (1987) Missense exonic mitochondrial mutation in cytochrome b gene of Saccharomyces cerevisiae resulting in core protein deficiency in complex III of respiratory chain. Curr Genet 12: 111–118

    Article  Google Scholar 

  • Chi NW, Kolodner RD (1994) Purification and characterization of MSH1, a yeast mitochondrial protein that binds to DNA mismatches. J Biol Chem 269: 29984–29992

    PubMed  CAS  Google Scholar 

  • Chow TYK, Kunz BA (1991) Evidence that an endoexonuclease controlled by the NUC2 gene functions in the induction of petite mutations in Saccharomyces cerevisiae. Curr Genet 20: 39–44

    Article  PubMed  CAS  Google Scholar 

  • Christianson T, Rabinowitz M (1983) Identification of multiple transcriptional initiation sites on the yeast mitochondrial genome by in vitro cap** with guanylyl-transferase. J Biol Chem 258: 14025–14033

    PubMed  CAS  Google Scholar 

  • Colson AM, Edderkaoui B, Coppee JY (1992) Structure-function relationship of cytochrome b by the genetic approach–intergenic revertants derived from frameshift mutations in the Saccharomyces cerevisiae apocytochrome b gene. Biochim Biophys Acta 1101: 157–161

    PubMed  CAS  Google Scholar 

  • Contamine V, Picard M (2000) Maintenance and integrity of the mitochondrial genome: a plethora of nuclear genes in the budding yeast. Microbiol Mol Biol Rev 64: 281–315

    Article  PubMed  CAS  Google Scholar 

  • Coppée JY, Rieger KJ, Kaniak A, di Rago JP, Groudinsky O, Slonimski PP (1996) Pet CR46, a gene which is essential for respiration and integrity of the mitochondrial DNA. Yeast 12: 577–582

    Google Scholar 

  • Costanzo MC, Fox TD (1990) Control of mitochondrial gene expression in Saccharomyces cerevisiae. Annu Rev Genet 24: 91–113

    Article  PubMed  CAS  Google Scholar 

  • Croteau DL, Stierum RH, Bohr VA (1999) Mitochondrial repair pathways. Mutat Res DNA Repair 434: 137–148

    Article  PubMed  CAS  Google Scholar 

  • Dagsgaard C, Taylor LE, O’Brien KM, Poyton RO (2001) Effects of anoxia and the mitochondrion on expression of aerobic nuclear COX genes in yeast: evidence for a signaling pathway from the mitochondrial genome to the nucleus. J Biol Chem 276: 7593–7601

    Article  PubMed  CAS  Google Scholar 

  • Dake E, Hofmann TJ, McIntire S, Hudson A, Zassenhaus HP (1988) Purification and properties of the major nuclease from mitochondria of Saccharomyces cerevisiae. J Biol Chem 263: 7691–7702

    PubMed  CAS  Google Scholar 

  • Dang YL, Martin NC (1993) Yeast mitochondrial RNaseP–sequence of the RPM2 gene and demonstration that its product is a protein subunit of the enzyme. J Biol Chem 268: 19791–19796

    PubMed  CAS  Google Scholar 

  • Davis AF, Ropp PA, Clayton DA, Copeland WC (1996) Mitochondrial DNA polymerase y is expressed and translated in the absence of mitochondrial DNA maintenance and replication. Nucleic Acids Res 24: 2753–2759

    Article  PubMed  CAS  Google Scholar 

  • Deloche O, Liberek K, Zylicz M, Georgopoulos C (1997) Purification and biochemical properties of Saccharomyces cerevisiae Mdjlp, the mitochondrial DnaJ homologue. J Biol Chem 272: 28539–28544

    Article  PubMed  CAS  Google Scholar 

  • Delouya D, Nobrega FG (1991) Map** of the ARS-like activity and transcription initiation sites in the noncanonical yeast mitochondrial on-6 region. Yeast 7: 51–60

    Article  PubMed  CAS  Google Scholar 

  • De Zamaroczy M, Bernardi G (1985) Sequence organization of the mitochondrial genome of yeast–a review. Gene 37: 1–17

    Article  PubMed  Google Scholar 

  • Dianov GL, Souza-Pinto N, Nyaga SG, Thybo T, Stevnsner T, Boh VA. (2001) Base excision repair in nuclear and mitochondrial DNA. Prog Nucleic Acid Res Mol Biol 68: 285–297

    Article  PubMed  CAS  Google Scholar 

  • Dieckmann CL, Gandy B (1987) Preferential recombination between GC clusters in yeast mitochondrial DNA. EMBO J 6: 4197–4204

    PubMed  CAS  Google Scholar 

  • Diffley JF, Stillman B (1991) A close relative of the nuclear, chromosomal high-mobility group protein HMG1 in yeast mitochondria. Proc Natl Acad Sci USA 88: 7864–7868

    Article  PubMed  CAS  Google Scholar 

  • Dimmer KS, Fritz S, Fuchs F, Messerschmitt M, Weinbach N, Neupert W, Westermann B (2002) Genetic basis of mitochondrial function and morphology in Saccharomyces cerevisiae. Mol Biol Cell 13: 847–853

    Article  PubMed  CAS  Google Scholar 

  • Di Rago JP, Colson AM (1988) Molecular basis for resistance to antimycin and diuron, Q-cycle inhibitors acting at the Q, site in the mitochondrial ubiquinolcytochrome c reductase in Saccharomyces cerevisiae. J Biol Chem 263: 12564–12570

    PubMed  Google Scholar 

  • Di Rago JP, Colson AM (1989) Molecular basis for resistance to myxothiazol, mucidin (strobilurin A), and stigmatellin, cytochrome b inhibitors acting at the center of the mitochondrial ubiquinol-cytochrome c reductase in Saccharomyces cerevisiae. J Biol Chem 264: 14643–14548

    Google Scholar 

  • Duchniewicz M, Germaniuk A, Westermann B, Neupert W, Schwarz E, Marszalek J (1999) Dual role of the mitochondrial chaperone Mdjlp in inheritance of mitochondrial DNA in yeast. Mol Cell Biol 19: 8201–8210

    PubMed  CAS  Google Scholar 

  • Dujon B (1981) Mitochondrial genetics and function. In: Strathern JN, Jones EW, Braoch JR (eds) The molecular biology of the yeast Saccharomyces. Life cycle and inheritance. Cold Spring Harbor Laboratory, New York, pp 505–535

    Google Scholar 

  • Edwards JC, Levens D, Rabinowitz M (1982) Analysis of transcriptional initiation of yeast mitochondrial DNA in a homologous in vitro transcription system. Cell 31: 337–346

    Article  PubMed  CAS  Google Scholar 

  • Egner A, Jakobs S, Hell SW (2002) Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast. Proc Natl Acad Sci USA 99: 3370–3375

    Article  PubMed  CAS  Google Scholar 

  • Entelis NS, Krasheninnikov IA, Martin RP, Tarassov IA (1996) Mitochondrial import of a yeast cytoplasmic tRNA (Lys): possible roles of aminoacylation and modified nucleosides in subcellular partitioning. FEBS Lett 384: 38–42

    Article  PubMed  CAS  Google Scholar 

  • Entelis NS, Kieffer S, Klesnikova OA, Martin RP, Tarassov IA (1998) Structural requirements of tRNA(Ly,) for its import into yeast mitochondria. Proc Natl Acad Sci USA 95: 2838–2843

    Article  PubMed  CAS  Google Scholar 

  • Evans IH (1983) Molecular genetic aspects of yeast mitochondria. In: Spencer JFT, Spencer DM, Smitt ARW (eds) Yeast genetics. Fundamental and applied aspects. Springer, Berlin Heidelberg New York, pp 269–370

    Chapter  Google Scholar 

  • Ezekiel UR, Zassenhaus HP (1994) Evidence for a site-specific endonuclease in yeast mitochondria which recognizes the sequence 5’GCCGCC. Biochem Biophys Res Commun 201: 208–214

    Article  PubMed  CAS  Google Scholar 

  • Fangman WL, Dujon B (1984) Yeast mitochondrial genomes consisting of only A-T base pairs replicate and exhibit suppressiveness. Proc Natl Acad Sci USA 81: 7156–7160

    Article  PubMed  CAS  Google Scholar 

  • Fangman WL, Henly JW, Churchill G, Brewer BJ (1989) Stable maintenance of a 35-base pair mitochondrial genome. Mol Cell Biol 9: 1917–1921

    PubMed  CAS  Google Scholar 

  • Fangman WL, Henly JW, Brewer BJ (1990) RPO41independent maintenance of [rho] mitochondrial DNA in Saccharomyces cerevisiae. Mol Cell Biol 10: 10–15

    Google Scholar 

  • Farrell LB, Gearing DP, Nagley P (1988) Reprogrammed expression of subunit 9 of the mitochondrial ATPase complex of Saccharomyces cerevisiae. Expression in vitro from a chemically synthesized gene and import into isolated mitochondria. Eur J Biochem 173: 131–137

    Google Scholar 

  • Ferguson LR, von Borstel RC (1992) Induction of the cytoplasmic petite mutation by chemical and physical agents in Saccharomyces cerevisiae. Mutat Res 265: 103–148

    Article  PubMed  CAS  Google Scholar 

  • Finnegan PM, Ellis TP, Nagley P, Lukins HB (1995) The mature AEP2 gene product of Saccharomyces cerevisiae, required for the expression of subunit 9 of ATPase, is a 58kDa mitochondrial protein. FEBS Lett 368: 505–508

    Article  PubMed  CAS  Google Scholar 

  • Fisk HA, Yaffe MP (1997) Mutational analysis of Mdm function in nuclear and mitochondrial inheritance. J Cell Biol 138: 485–494

    Article  PubMed  CAS  Google Scholar 

  • Foury F (1989) Cloning and sequencing of the nuclear gene MIP1 encoding the catalytic subunit of the yeast mitochondrial DNA polymerase. J Biol Chem 264: 20552–20560

    PubMed  CAS  Google Scholar 

  • Foury F, Kolodynski F (1983) Pif mutation blocks recombination between mitochondrial rho+ and rho genomes having tandemly arrayed repeat units in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 80: 5345–5349

    Google Scholar 

  • Foury F, Lahaye A (1987) Cloning and sequencing of the PIF gene involved in repair and recombination of yeast mitochondrial DNA. EMBO J 6: 1441–1449

    PubMed  CAS  Google Scholar 

  • Foury F, Vanderstraeten S (1992) Yeast mitochondrial DNA mutators with deficient proofreading exonucleolytic activity. EMBO J 11: 2717–2726

    PubMed  CAS  Google Scholar 

  • Foury F, van Dyck E (1985) A PIF-dependent recombinogenic signal in the mitochondrial DNA of yeast. EMBO J 4: 3525–3530

    PubMed  CAS  Google Scholar 

  • Foury F, Vanderstraeten S, Roganti T (1994) Mutational analysis of the yeast mitochondrial DNA polymerase gene. Arch Int Physiol Biochim Biophys 102: B35

    Google Scholar 

  • Foury F, Roganti T, Lecrenier N, Purnelle B (1998) The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae. FEBS Lett 440: 325–331

    Article  PubMed  CAS  Google Scholar 

  • Fox TD (1987) Natural variation in the genetic code. Annu Rev Genet 21: 67–92

    Article  PubMed  CAS  Google Scholar 

  • Fox TD (1996) Translational control of endogenous and recoded nuclear genes in yeast mitochondria: regulation and membrane targeting. Experientia 52: 1130–1135

    Article  PubMed  CAS  Google Scholar 

  • Fox TD, Sanford JC, McMullin TW (1988) Plasmids can stably transform yeast mitochondria lacking endogenous mtDNA. Proc Natl Acad Sci USA 85: 7288–7292

    Article  PubMed  CAS  Google Scholar 

  • Fox TD, Folley LS, Mulero JJ, McMullin TW, Thorsness PE, Hedin LO, Costanzo MC (1991) Analysis and manipulation of yeast mitochondrial genes. In: Guthrie C, Fink GR (eds) Guide to yeast genetics and molecular biology. Methods in enzymology, vol 194. Academic Press, New York, pp 149–165

    Chapter  Google Scholar 

  • Fritz S, Rapoport D, Klanner E, Neupert W, Westermann B (2001) Connection of the mitochondrial outer and inner membranes by Fzol is critical for organellar fusion. J Cell Biol 152: 683–692

    Article  PubMed  CAS  Google Scholar 

  • Geier BM, Schagger H, Brandt U, Colson AM, von Jagow G (1992) Point mutation in cytochrome b of yeast ubihydroquinone-cytochrome c oxidoreductase causing myxothiazol resistance and facilitated dissociation of the iron-sulfur subunit. Eur J Biochem 208: 375–380

    Article  PubMed  CAS  Google Scholar 

  • Genga A, Bianchi L, Foury F (1986) A nuclear mutant of Saccharomyces cerevisiae deficient in mitochondrial DNA replication and polymerase activity. J Biol Chem 261: 9328–9332

    PubMed  CAS  Google Scholar 

  • Graves T, Dante M, Eisenhour L, Christianson TW (1998) Precise map** and characterization of the RNA primers of DNA replication for a yeast hypersuppressive petite by in vitro cap** with guanylyltransferase. Nucleic Acids Res 26: 1309–1316

    Article  PubMed  CAS  Google Scholar 

  • Greanleaf AL, Kelly JL, Lehman IR (1986) Yeast RPO41 gene product is required for transcription and maintenance of the mitochondrial genome. Proc Natl Acad Sci USA 83: 3391–3394

    Article  Google Scholar 

  • Green-Willms NS, Fox TD, Costanzo MC (1998) Functional interactions between yeast mitochondrial ribosomes and mRNA 5’untranslated leaders. Mol Cell Biol 18: 1826–1834

    PubMed  CAS  Google Scholar 

  • Grivell LA (1989) Nucleo-mitochondrial interactions in mitochondrial biogenesis. Eur J Biochem 182: 477–493

    Article  PubMed  CAS  Google Scholar 

  • Grivell LA (1995) Nucleo-mitochondrial interactions in mitochondrial gene expression. Crit Rev Biochem Mol Biol 30: 121–164

    Article  PubMed  CAS  Google Scholar 

  • Guan KL, Farh L, Marshall TK, Deschenes RJ (1993) Normal mitochondrial structure and genome maintenance in yeast requires the dynamin-like product of the MGM1 gene. Curr Genet 24: 1–2

    Article  Google Scholar 

  • Haffter P, McMullin TW, Fox TD (1990) A genetic link between an mRNA-specific translational activator and the translation system in yeast mitochondria. Genetics 125: 495–503

    PubMed  CAS  Google Scholar 

  • Hanekamp T, Thorsness PE (1996) Inactivation of YME2/RNAl2, which encodes an integral inner mitochondrial membrane protein, causes increased escape of DNA from mitochondria to the nucleus in Saccharomyces cerevisiae. Mol Cell Biol 16: 27642771

    Google Scholar 

  • Hanekamp T, Thorsness PE (1999) YNT20, a bypass suppressor of ymel yme2, encodes a putative 3’-5’ exonuclease localized in mitochondria of Saccharomyces cerevisiae. Curr Genet 34: 438–448

    Google Scholar 

  • Hensgens LAM, Grivell LA, Borst P, Bos JL (1979) Nucleotide sequence of the mitochondrial structural gene for subunit 1 of the yeast ATPase complex. Proc Natl Acad Sci USA 76: 1663–1667

    Article  PubMed  CAS  Google Scholar 

  • Hermann GJ, Shaw JM (1998) Mitochondrial dynamics in yeast. Annu Rev Cell Dev Biol 14: 265–303

    Article  PubMed  CAS  Google Scholar 

  • Hermann GJ, King EJ, Shaw JM (1997) The yeast gene, MDM 20, is necessary for mitochondrial inheritance and organization of the actin cytoskeleton. J Cell Biol 137: 141–153

    Article  PubMed  CAS  Google Scholar 

  • Hermann GJ, Thatcher JW, Mills JP, Hales KG, Fuller M, Nunnari J, Shaw JM (1998) Mitochondrial fusion in yeast requires the transmembrane GTPase Fzolp. J Cell Biol 143: 359–373

    Article  PubMed  CAS  Google Scholar 

  • Hobbs AE, Srinivasan M, McCaffery JM, Jensen RE (2001) Mmmlp, a mitochondrial outer membrane protein, is connected to mitochondrial DNA (mtDNA) nucleoids and required for mtDNA stability. J Cell Biol 152: 401–410

    Article  PubMed  CAS  Google Scholar 

  • Hollingsworth MJ, Martin NC (1986) Rnase P activity in the mitochondria of Saccharomyces cerevisiae depends on both mitochondrion and nucleus-encoded components. Mol Cell Biol 6: 1058–1064

    PubMed  CAS  Google Scholar 

  • Howe CJ (1988) Organelle transformation. Trends Genet 5: 150

    Article  Google Scholar 

  • Hu JP, Vanderstraeten S, Foury F (1995) Isolation and characterization of ten mutator alleles of the mitochondrial DNA polymerase-encoding MIP1 gene from Saccharomyces cerevisiae. Gene 160: 105–110

    Article  PubMed  CAS  Google Scholar 

  • Hudspeth MES, Ainley WM, Shumard DS, Butow RA, Grossman L (1982) Location and structure of the vari gene on yeast mitochondrial DNA: nucleotide sequence of the 40.0 allele. Cell 30: 617–626

    Article  PubMed  CAS  Google Scholar 

  • Ikeda E, Yoshida S, Mitsuzawa H, Uno I, Tohe A (1994) Ygel is a yeast homolog of Escherichia coli GrpE and is required for maintenance of mitochondrial functions. FEBS Lett 339: 265–268

    Google Scholar 

  • Jia Y, Rothermel B, Thornton J, Butow RA (1997) A basic helix-loop-helix-leucine zipper transcription complex in yeast functions in a signalling pathway from mitochondria to the nucleus. Mol Cell Biol 17: 1110–1117

    PubMed  CAS  Google Scholar 

  • Jensen RE, Hobbs, AE, Cerveny KL, Sesaki H (2000) Yeast mitochondrial dynamics: fusion, division, segregation, and shape. Microsc Res Tech 51: 573–583

    Article  PubMed  CAS  Google Scholar 

  • Johnston SA, Anziano PQ, Shark K, Sanford JC, Butow RA (1988) Mitochondrial transformation in yeast by bombardment with microprojectiles. Science 240: 1530–1540

    Article  Google Scholar 

  • Jones BA, Fangman WL (1992) Mitochondrial DNA maintenance in yeast requires a protein containing region related to the GTP-binding domain of dynamin. Genes Dev 6: 380–389

    Article  PubMed  CAS  Google Scholar 

  • Kaser M, Langer T (2000) Protein degradation in mitochondria. Semin Cell Dev Biol 11: 181–190

    Article  PubMed  CAS  Google Scholar 

  • Kassenbrock CK, Gao GJ, Groom KR, Sulo P, Douglas MG, Martin NC (1995) RPM2, independently of its mitochondrial RNase P function, suppresses an 1SP42 mutant defective in mitochondrial import and is essential for normal growth. Mol Cell Biol 15: 4763–4770

    Google Scholar 

  • Kawasaki K, Takahashi M, Natori M, Shibata T (1991) DNA sequence recognition by a eukaryotic sequence-specific endonuclease, endo.SceI from Saccharomyces cerevisiae. J Biol Chem 266: 5343–5347

    Google Scholar 

  • Kelly JL, Lehman IR (1986) Yeast mitochondrial RNA polymerase. Purification and properties of the catalytic subunit. J Biol Chem 261: 10340–10347

    Google Scholar 

  • Kim JM, Yoshikawa H, Shirahige K (2001) A member of the YERO56c/yjgf/Uk114 family links isoleucine biosynthesis and intact mitochondrial maintenance in Saccharomyces cerevisiae. Genes Cells 6: 507–517

    Article  PubMed  CAS  Google Scholar 

  • Kirchman PA, Kim S, Lai CY, Jazwinski SM (1999) Interorganelle signaling is a determinant of longevity in Saccharomyces cerevisiae. Genetics 152: 179–190

    PubMed  CAS  Google Scholar 

  • Koprowski P, Fikus MU, Mieczkowski P, Ciesla Z (2002) A dominant mitochondrial mutator phenotype of Saccharomyces cerevisiae conferred by mshl alleles altered in the sequence encoding the ATP-binding domain. Mol Genet Genom 266: 988–994

    Article  CAS  Google Scholar 

  • Kotylak Z, Slonimski PP (1976) Joint control of cytochromes a and b by a unique mitochondrial DNA region comprising four genetic loci. In: Saccone C, Kroon AM (eds) The genetic function of mitochondrial DNA. Elsevier, Amsterdam, pp 143–154

    Google Scholar 

  • Kuroiwa T (1982) Mitochondrial nuclei. Int Rev Cytol 75: 1–5

    Article  PubMed  CAS  Google Scholar 

  • Kurland CG, Andersson SG (2000) Origin and evolution of the mitochondrial proteome. Microbiol Mol Biol Rev 64: 786–820

    Article  PubMed  CAS  Google Scholar 

  • Lahaye A, Stahl H, Thiness-Empoux D, Foury F (1991) PIF1–a DNA helicase in yeast mitochondria. EMBO J 10: 997–1007

    PubMed  CAS  Google Scholar 

  • Law RHP, Devenish RJ, Nagley P (1990) Assembly of imported subunit 8 into the ATP synthase complex of isolated mitochondria. Eur J Biochem 188: 421–429

    Article  PubMed  CAS  Google Scholar 

  • Law RH, Manon S, Devenish RJ, Nagley P (1995) ATP synthase from Saccharomyces cerevisiae. Methods Enzymol 260: 133–163

    Article  PubMed  CAS  Google Scholar 

  • Lecrenier N, Foury F (1995) Overexpression of the RNR gene rescues Saccharomyces cerevisiae mutants in the mitochondrial DNA polymerase-encoding MIP1 gene. Mol Gen Genet 249: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Lecrenier N, Foury F (2000) New features of mitochondrial DNA replication system in yeast and man. Gene 246: 37–48

    Article  PubMed  CAS  Google Scholar 

  • Lecrenier N, van der Bruggen P, Foury F (1997) Mitochondrial DNA polymerase from yeast to man: a new family of polymerases. Gene 185: 147–152

    Article  PubMed  CAS  Google Scholar 

  • Lemesle-Meunier D (1989) Studies on the CoQH2cytochrome c reductase segment of the respiratory chain of yeast mitochondria, using mutants of the cytochrome b split gene. Biochimie 71: 1145–1156

    Article  PubMed  CAS  Google Scholar 

  • Li M, Tzagoloff A (1979) Assembly of the mitochondrial membrane system: sequences of yeast mitochondrial valine and an unusual threonine tRNA gene. Cell 18: 47–54

    Article  PubMed  CAS  Google Scholar 

  • Liao XS, Butow RA (1993) RTG1 and RTG2-2 yeast genes required for a novel path of communication from mitochondria to the nucleus. Cell 72: 61–71

    Google Scholar 

  • Ling F, Makashima F, Morishima N, Shibata T (1995) A nuclear mutation defective in mitochondrial recombination in yeast. EMBO J 14: 4090–4101

    PubMed  CAS  Google Scholar 

  • Ling F, Morioka H, Ohtsuka E, Shibata T (2000) A role for MHR1, a gene required for mitochondrial genetic recombination, in the repair of damage spontaneously introduced in yeast mtDNA. Nucleic Acids Res 28: 4956–4963

    Article  PubMed  CAS  Google Scholar 

  • Lisowsky T (1994) ERV is involved in the cell-division cycle and the maintenance of mitochondrial genomes in Saccharomyces cerevisiae. Curr Genet 26: 15–20

    Article  PubMed  CAS  Google Scholar 

  • Lisowsky T, Esser K, Stein T, Pratje E, Michaelis G (1999) Extranuclear inheritance: genetics and biogenesis of mitochondria. Progress in botany 60. Springer, Berlin Heidelberg New York, pp 99–118

    Chapter  Google Scholar 

  • Lockshon D, Zweifel SG, Freeman-Cook LL, Lorimer HE, Brewer BJ, Fangman WL (1995) A role for recombination junctions in the segregation of mitochondrial DNA in yeast. Cell 81: 947–955

    Article  PubMed  CAS  Google Scholar 

  • MacAlpine DM, Perlman PS, Butow RA (2000) The numbers of individual mitochondrial DNA molecules and mitochondrial DNA nucleoids in yeast are co-regulated by the general amino acid control pathway. EMBO J 19: 767–775

    Article  PubMed  CAS  Google Scholar 

  • MacAlpine DM, Kolesar J, Okamoto K, Butow RA, Perlman PS (2001) Replication and preferential inheritance of hypersuppressive petite mitochondrial DNA. EMBO J 20: 1807–1817

    Article  PubMed  CAS  Google Scholar 

  • Macino G, Tzagoloff A (1980) Assembly of the mitochondrial membrane system: sequence analysis of a yeast mitochondrial ATPase gene containing the oli2 and oli4 loci. Cell 20: 507–517

    Article  PubMed  CAS  Google Scholar 

  • Marczynski GT, Schultz PW, Jaening JA (1989) Use of yeast nuclear DNA sequences to define the mitochondrial RNA polymerase promoter in vitro. Mol Cell Biol 9: 3193–3202

    PubMed  CAS  Google Scholar 

  • Marotta R, Colin Y, Goursot R, Bernardi G (1982) A region of extreme instability in the mitochondrial genome of yeast. EMBO J 1: 529–534

    PubMed  CAS  Google Scholar 

  • Martin RP, Schneller JM, Stahl AJC, Dirheimer G (1979) Import of nuclear deoxyribonucleic acid coded lysine-accepting transfer ribonucleic acid (anticodon CUU) into yeast mitochondria. Biochemistry 19: 4600–4605

    Article  Google Scholar 

  • Martin RP, Sibler AP, Dirheimer G, de Henau S, Grosjean H (1981) Yeast mitochondrial tRNA Trp injected with E. coli activating enzyme into Xenopus oocytes suppresses UGA termination. Nature 293: 235–237

    Article  PubMed  CAS  Google Scholar 

  • Martinus RD, Garth GP, Webster TL, Cartwright P, Nalow DJ, Hoj PB, Hoogenraad NJ (1996) Selective induction of mitochondrial chaperones in response to loss of the mitochondrial genome. Eur J Biochem 240: 98–103

    Article  PubMed  CAS  Google Scholar 

  • Mason TL, Sanchirico ME, Sirum-Connally K (1996) Molecular genetics of the peptidyl transferase center and the unusual Varl protein in yeast mitochondrial ribosomes. Experientia 52: 1148–1157

    Article  PubMed  CAS  Google Scholar 

  • Masters BS, Stohl LL, Clayton DA (1987) Yeast mitochondrial RNA polymerase is homologous to those encoded by bacteriophages T3 and T7. Cell 51: 89–99

    Article  PubMed  CAS  Google Scholar 

  • Maxwell RJ, Devenish RJ, Nagley P (1986) The nucleotide sequence of the mitochondrial genome of an abundant petite mutant of Saccharomyces cerevisiae carrying the oril replication origin. Biochem Int 13: 101–108

    PubMed  CAS  Google Scholar 

  • Meeusen S, Tieu Q, Wong E, Weiss E, Schulz D, Yates JR, Nunnari J (1999) Mgm101p is a novel component of the mitochondrial nucleoid that binds DNA and is required for the repair of oxidatively damaged mitochondrial DNA. J Cell Biol 145: 291–304

    Article  PubMed  CAS  Google Scholar 

  • Meunier B (2001) Site directed mutations in the mitochondrially encoded subunits I and III of yeast cytochrome oxidase. Biochem J 354: 407–412

    Article  PubMed  CAS  Google Scholar 

  • Meunier B, Colson AM (1989) Increased diuron resistance in the joint expression of mutations located at DIU2, DIU3 and DIU4 loci of Saccharomyces cerevisiae. Curr Genet 15: 121–128

    Article  PubMed  CAS  Google Scholar 

  • Meunier B, Colson AM (1994) Random deficiency mutations and reversions in the cytochrome c oxidase subunit I, II, and III of Saccharomyces cerevisiae. Biochim Biophys Acta 1187: 112–115

    Article  PubMed  CAS  Google Scholar 

  • Miyakawa I, Aoi H, Sando N, Kuroiwa T (1984) Fluorescence microscopic studies of mitochondrial nucleoids during meiosis and sporulation in the yeast, Saccharomyces cerevisiae. J Cell Sci 66: 21–38

    PubMed  CAS  Google Scholar 

  • Miyakawa I, Sando N, Kawano S, Nakamura S, Kuroiwa T (1987) Isolation of morphologically intact mitochondrial nucleoids from the yeast, Saccharomyces cerevisiae. J Cell Sci 88: 431–439

    PubMed  CAS  Google Scholar 

  • Miyakawa I, Fumoto S, Kuroiwa T, Sando N (1995) Characterization of DNA-binding proteins involved in the assembly of mitochondrial nucleoids in the yeast Saccharomyces cerevisiae. Plant Cell Physiol 36: 1179–1188

    PubMed  CAS  Google Scholar 

  • Morales MJ, Wise CA, Hollingsworth MJ, Martin NC (1989) Characterization of yeast mitochondrial RNase P: an intact RNA subunit is not essential for activity in vitro. Nucleic Acids Res 17: 6865–6881

    Article  PubMed  CAS  Google Scholar 

  • Morales MJ, Dang TL, Lou YC, Sulo P, Martin NC (1992) A 105 kDa protein is required for yeast mitochondrial RNase P activity. Proc Natl Acad Sci USA 89: 9875–9879

    Article  PubMed  CAS  Google Scholar 

  • Morris CE, McGraw NJ, Joho K, Brown JE, Klement JF et al. (1987) Mechanism of promoter recognition by the bacteriphage T3 and T7 RNA polymerases. In: Reznikoff WS, Burgess RR, Dahlberg JE, Gross CA, Record MP Jr, Wickens MP (eds) RNA polymerase and the regulation of transcription. Elsevier, New York, pp 47–58

    Google Scholar 

  • Mozdy A, McCaffery JM, Shaw JM (2000) Dnmlp GTPasemediated mitochondrial fusion is a multi-step process requiring the novel integral membrane component Fislp. J Cell Biol 151: 367–379

    Article  PubMed  CAS  Google Scholar 

  • Mueller DM, Getz GS (1986a) Transcriptional regulation of the mitochondrial genome of yeast Saccharomyces cerevisiae. J Biol Chem 261: 11756–11764

    PubMed  CAS  Google Scholar 

  • Mueller DN, Getz GS (1986b) Steady state analysis of mitochondrial RNA after growth of yeast Saccharomyces cerevisiae under catabolite repression and derepression. J Biol Chem 261: 11816–11822

    PubMed  CAS  Google Scholar 

  • Mulero JJ, Rosenthal JK, Fox TD (1994) Pet112, a Saccharomyces cerevisiae nuclear gene required to maintain rho+ mitochondrial DNA. Curr Genet 25: 299–304

    Google Scholar 

  • Murthy V, Pasupathy K (1994) Characterization of mitochondrial DNA primase from Saccharomyces cerevisiae. J Biosci 19: 1–8

    Article  CAS  Google Scholar 

  • Murthy V, Pasupathy K (1995) Isolation and characterization of a multienzyme complex containing DNA replicative enzymes from mitochondria of S. cerevisiae - multienzyme complex from yeast mitochondria. Mol Biol Rep 20: 135–141

    Article  CAS  Google Scholar 

  • Nagley P, Devenish RJ (1989) Leading organellar proteins along new pathways: the relocation of mitochondrial and chloroplast genes to the nucleus. TIBS 13: 31–35

    Google Scholar 

  • Nagley P, Farrell LB, Gearing DP, Nero D, Meltzer S, Devenish RJ (1988) Assembly of functional proteintranslocating ATPase complex in yeast mitochondria with cytoplasmically synthesized subunit 8, a polypeptide normally encoded within the organelle. Proc Natl Acad Sci USA 85: 2091–2095

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa K, Morishima N, Shibata T (1992) An endonuclease with multiple cutting sites, endo.SceI, initiates genetic recombination at its cutting site in yeast mitochondria. EMBO J 11: 2707–2715

    PubMed  CAS  Google Scholar 

  • Netter P, Robineau S (1989) The differential overamplification of short sequences in the mitochondrial DNA of rho petites in Saccharomyces cerevisiae stimulates recombination. Gene 83: 25–38

    Article  PubMed  CAS  Google Scholar 

  • Netter P, Robineau S, Lemaire C (1995) Mutations in the mitochondrial split gene COX1 are preferentially located in exons: a map** study of 170 mutants. Mol Gen Genet 246: 445–454

    Article  PubMed  CAS  Google Scholar 

  • Newman SM, Zelenaya-Troitskaya O, Perlman PS, Butow RA (1996) Analysis of mitochondrial DNA nucleoids in wild-type and a mutant strain of Saccharomyces cerevisiae that lacks the mitochondrial HMG box protein Abf2p. Nucleic Acids Res 24: 386–393

    Article  PubMed  CAS  Google Scholar 

  • Novitski CE, Macreadie IG, Maxwell RJ Lukins HB, Linnane AW, Nagley P (1984) Biogenesis of mitochondria: genetic and molecular analysis of the oli2 region of mitochondrial DNA in Saccharomyces cerevisiae. Curr Genet 8: 135–146

    Article  CAS  Google Scholar 

  • Nunnari J, Marshall WF, Straight A, Murray A, Sedat JW, Walter P (1997) Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA. Mol Biol Cell 8: 1233–1242

    PubMed  CAS  Google Scholar 

  • Ohta K, Nicolas A, Keszenman-Pereyra D, Shibata T (1996) Endo.SK1: an inducible site-specific endonuclease from yeast mitochondria. Molec Gen Genet 250: 395–404

    Article  PubMed  CAS  Google Scholar 

  • Okamoto K, Perlman PS, Butow RA (1998) The sorting of mitochondrial DNA and mitochondrial proteins in zygotes: preferential transmission of mitochondrial DNA to the medial bud. J Cell Biol 142: 613–623

    Article  PubMed  CAS  Google Scholar 

  • Osawa S, Collins D, Ohama T, Jukes TH, Watanabe K (1990) Evolution of the mitochondrial genetic code. III. Reassignment of CUN codons from leucine to threonine during evolution of yeast mitochondria. J Mol Evol 30: 322–328

    Google Scholar 

  • Osinga KA, de Fries E, van der Horst G, Tabak HF (1984) Processing of yeast mitochondrial messenger RNA at a conserved dodecamer sequence. EMBO J 3: 829–834

    PubMed  CAS  Google Scholar 

  • Otsuga D, Keegan BR, Brisch E, Thatcher JW, Hermann GJ, Bleazard W, Shaw JM (1998) The dynamin-related GTPase, Dnmlp, controls mitochondrial morphology in yeast. J Cell Biol 143: 333–349

    Google Scholar 

  • Oxelmark E, Marchini A, Malanchi I, Magherini F, Jaquet L, Hajibagheri MA, Blight KJ, Jaumiaux JC, Tommasino M (2000) Mmflp, a novel yeast mitochondrial protein conserved throughout evolution and involved in maintenance of the mitochondrial genome. Mol Cell Biol 20: 7784–7797

    Article  PubMed  CAS  Google Scholar 

  • Pao GM, Saier MH (1994) The N-terminal, putative, mitochondrial targeting domain of the mitochondrial genome maintenance protein (MGM1) in yeast is homologous to the bacterial ribonuclease inhibitor barstar. Mol Biol Evol 11: 964–965

    PubMed  CAS  Google Scholar 

  • Parikh VS, Conrad-Webb H, Docherty R, Butow RA (1989) Interaction between the yeast mitochondrial and nuclear genomes influencing the abundancy of novel transcripts derived from the spacer region of nuclear ribosomal DNA repeat. Mol Cell Biol 9: 1897–1907

    PubMed  CAS  Google Scholar 

  • Pasupathy K, Pradhan DS (1992) Evidence for excision repair in promitochondrial DNA of anaerobic cells of Saccharomyces cerevisiae. Mutat Res 273: 281–288

    Article  PubMed  CAS  Google Scholar 

  • Pelissier P, Camougrand N, Velours G, Guerin M (1995) NCA3, a nuclear gene involved in the mitochondrial expression of subunits 6 and 8 of the F.- F1 ATP synthase of S. cerevisiae. Curr Genet 27: 409–416

    Google Scholar 

  • Piskur J (1988a) Transmission of yeast mitochondrial loci to progeny is reduced when nearby intergenic regions containing on sequences are deleted. Mol Gen Genet 214: 425–432

    Article  PubMed  CAS  Google Scholar 

  • Piskur J (1988b) A 5kb intergenic region containing oril in the mitochondrial DNA of Saccharomyces cerevisiae is dispensable for expression of the respiratory phenotype. FEBS Lett 229: 145–149

    Article  PubMed  CAS  Google Scholar 

  • Piskur J (1994) Inheritance of the yeast mitochondrial genome. Plasmid 31: 229–241

    Article  PubMed  CAS  Google Scholar 

  • Piskur J (1997) The transmission disadvantage of yeast mitochondrial intergenic mutants is eliminated in the mgt (ccel) background. J Bacteriol 179: 5614–5617

    PubMed  CAS  Google Scholar 

  • Pon L, Schatz G (1991) Biogenesis of yeast mitochondria. In: Broach JR, Pringle JR, Jones EW (eds) The molecular biology of the yeast Saccharomyces: genome dynamics, protein synthesis and energetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 333–406

    Google Scholar 

  • Poyton RO, Dagsgaard CJ (2000) Mitochondrial-nuclear crosstalk is involved in oxygen-regulated gene expression in yeast. Adv Exp Med Biol 475: 177–184

    Article  PubMed  CAS  Google Scholar 

  • Poyton RO, McEwen JE (1996) Crosstalk between nuclear and mitochondrial genomes. Annu Rev Biochem 65: 563–607

    Article  PubMed  CAS  Google Scholar 

  • Rank GH, Person C (1970) Reversion of cytoplasmically inherited respiratory deficiency in Saccharomyces cerevisiae. Dan J Gene Cytol 11: 716–728

    Google Scholar 

  • Rayko E, Goursot R (1996a) Amphimeric mitochondrial genomes of petite mutants of yeast. I. Flip-flop amphimers make up the mitochondrial genomes of “palindromic” petite mutants of yeast. Curr Genet 30: 126–134

    Google Scholar 

  • Rayko E, Goursot R (1996b) Amphimeric mitochondrial genomes of petite mutants of yeast. II. A model for the amplification of amphimeric mitochondrial petite DNA. Curr Genet 30: 135–144

    Google Scholar 

  • Rayko E, Goursot R (1999) Amphimeric mitochondrial genomes of petite mutants of yeast. III. Generation by linking two secondary-structure-dependent illegitimate recombination events. Curr Genet 35: 14–22

    Google Scholar 

  • Rep M, Grivell LA (1996) The role of protein degradation in mitochondrial function and biogenesis. Curr Genet 30: 367–380

    Article  PubMed  CAS  Google Scholar 

  • Ricchetti M, Fairhead C, Dujon B (1999) Mitochondrial DNA repairs double-strand breaks in yeast chromosomes. Nature 402: 96–100

    Article  PubMed  CAS  Google Scholar 

  • Rickwood D, Chambers JAA (1981) Evidence for protected regions of DNA in the mitochondrial nucleoid of Saccharomyces cerevisiae. FEMS Microbiol Lett 12: 187–190

    Article  CAS  Google Scholar 

  • Rickwood D, Chambers JAA, Barat M (1981) Isolation and preliminary characterization of DNA-protein complexes from mitochondria of Saccharomyces cerevisiae. Exp Cell Res 133: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Roeder AD, Hermann GJ, Keegan BR, Thatcher SA, Shaw JM (1998) Mitochondrial inheritance is delayed in Saccharomyces cerevisiae cells lacking the serine/threonine phosphatase PTC1. Mol Biol Cell 9: 917–930

    PubMed  CAS  Google Scholar 

  • Rothermel BA, Shyjan AW, Etheredge JL, Butow RA (1995) Transactivation by Rtglp, a basic helix-loop-helix protein that functions in communication between mitochondria and the nucleus in yeast. J Biol Chem 270: 29476–29482

    Article  PubMed  CAS  Google Scholar 

  • Sanchez NS, Pearce DA, Cardillo TS, Uribe S, Sherman F (2001) Requirements of Cyc2p and the porin, Porlp, for ionic stability and mitochondrial integrity in Saccharomyces cerevisiae. Arch Biochem Biophys 392: 326–332

    Article  PubMed  CAS  Google Scholar 

  • Sanchirico M, Tzellas A, Fox TD, Conrad-Webb H, Perlman PS, Mason TL (1995) Relocation of the unusual VAR1 gene from the mitochondrion to the nucleus. Biochem Cell Biol 73: 987–995

    Article  PubMed  CAS  Google Scholar 

  • Sando N, Miyakawa I, Nishibayashi S, Kuroiwa T (1981) Arrangement of mitochondrial nucleoids during the life cycle of Saccharomyces cerevisiae. J Gen Appl Microbiol 27: 511–516

    Article  Google Scholar 

  • Saraste M (1999) Oxidative phosphorylation at the fin de siècle. Science 283: 1488–1493

    Article  PubMed  CAS  Google Scholar 

  • Sato H, Tachifuji A, Tamura M, Miyakawa I (2002) Identification of the YMN-1 antigen protein and biochemical analyses of protein components in the mitochondrial nucleoid fraction of the yeast Saccharomyces cerevisiae. Protoplasma 219: 51–58

    Article  PubMed  CAS  Google Scholar 

  • Sawyer DE, VanHouten B (1999) Repair of DNA damage in mitochondria. Mutat Res DNA Repair 434: 161–176

    Article  PubMed  CAS  Google Scholar 

  • Scheffler IE (1999) Mitochondria. Wiley-Liss, New York

    Book  Google Scholar 

  • Scheffler JE (2000) A century of mitochondrial research: achievements and perspectives. Mitochondrion 1: 3–31

    Article  Google Scholar 

  • Schilke B, Forster J, Davis J, Kames P, Walter W, Laloraya S, Johnson J, Miao BJ, Craig E (1996) The cold sensitivity of a mutant of Saccharomyces cerevisiae lacking a mitochondrial heat shock protein 70 is suppressed by loss of mitochondrial DNA. J Cell Biol 134: 603–613

    Article  PubMed  CAS  Google Scholar 

  • Schinkel AH, Tabak HF (1989) Mitochondrial RNA polymerase: dual role in transcription and replication. Trends Genet 5: 149–154

    Article  PubMed  CAS  Google Scholar 

  • Schinkel AH, Groot Koerkamp MJA, van der Horst GTJ, Touw EPW, Osinga KA et al. (1986) Characterization of the promoter of the large ribosomal RNA gene in yeast mitochondria and separation of mitochondrial RNA polymerase into two different functional components. EMBO J 5: 1041–1047

    PubMed  CAS  Google Scholar 

  • Schinkel AH, Groot Koerkamp MJA, Touw EPW, Tabak HF (1987a) Specificity factor of yeast mitochondrial RNA polymerase. Purification and interaction with core RNA polymerase. J Biol Chem 262: 12785–12791

    Google Scholar 

  • Schinkel AH, Groot Koerkamp MIA, Stuiver MH, van der Horst GTJ, Tabak HF (1987b) Effect of point mutations on in vitro transcription from the promoter for the large ribosomal RNA gene of yeast mitochondria. Nucleic Acids Res 15: 5597–5612

    Article  PubMed  CAS  Google Scholar 

  • Schinkel AH, Groot Koerkamp MJA, Tabak HF (1988a) Mitochondrial RNA polymerase of Saccharomyces cerevisiae: composition and mechanism of promoter recognition. EMBO J 7: 3255–3262

    PubMed  CAS  Google Scholar 

  • Schinkel AH, Groot Koerkamp MJA, Teunissen AWRH, Tabak HF (1988b) RNA polymerase induces DNA bending at yeast mitochondrial promoters. Nucleic Acids Res 16: 9147–9163

    Article  PubMed  CAS  Google Scholar 

  • Schmitt ME (1999) Molecular modeling of the three-dimensional architecture of the RNA component of yeast RNase MRP. J Mol Biol 292: 827–836

    Article  PubMed  CAS  Google Scholar 

  • Schweyen RJ, Weiss-Brummer B, Backhaus B, Kaudewitz F (1977) The genetic map of the mitochondrial genome in yeast: Map of drug’ and mir markers as revealed from population analyses of rho clones in Saccharomyces cerevisiae. Mol Gen Genet 159: 151–160

    Article  Google Scholar 

  • Sedman T, Kuusk S, Kivi S, Sedman J (2000) A DNA helicase required for maintenance of the functional mitochondrial genome in Saccharomyces cerevisiae. Mol Cell Biol 20: 1816–1824

    Article  PubMed  CAS  Google Scholar 

  • Sekito T, Thornton J, Butow RA (2000) Mitochondria-tonuclear signaling is regulated by the subcellular localization of the transcription factors Rtglp and Rtg3p. Mol Biol Cell 11: 2104–2115

    Google Scholar 

  • Sekito T, Liu Z, Thornton J, Butow RA (2002) RTGdependent mitochondria-to-nucleus signaling is regulated by MKS1 and is linked to formation of yeast Prion [URE3]. Mol Biol Cell 13: 795–804

    Article  PubMed  CAS  Google Scholar 

  • Seraphin B (1990) Conserved helicase motifs in the PIF protein. Nucleic Acids Res 18: 661

    Article  PubMed  CAS  Google Scholar 

  • Seraphin B, Boulet A, Simon M, Faye G (1987) Construction of a yeast strain devoid of mitochondrial introns and its use to screen nuclear genes involved in mitochondrial splicing. Proc Natl Acad Sci USA 84: 6810–6814

    Article  PubMed  CAS  Google Scholar 

  • Seraphin B, Simon M, Jacq C, Faye G (1989) Sequence of a yeast mitochondrial 0X73/0L12 promoter region. Nucleic Acids Res 17: 4886

    Article  PubMed  CAS  Google Scholar 

  • Sesaki H, Jensen RE (1999) Division versus fusion: Dnmlp and Fzolp antagonistically regulate mitochondrial shape. J Cell Biol 147: 699–706

    Google Scholar 

  • Sezaki H, Jensen RE (2001) UGO1 encodes an outer membrane protein required for mitochondrial fusion. J Cell Biol 152: 1123–1134

    Google Scholar 

  • Shafer KS, Hanekamp T, White KH, Thorsness PE (1999) Mechanisms of mitochondrial DNA escape to the nucleus in the yeast Saccharomyces cerevisiae. Curr Genet 36: 183–194

    Article  PubMed  CAS  Google Scholar 

  • Shaw JM, Nunnari J (2002) Mitochondrial dynamics and division in budding yeast. Trends Cell Biol 12: 178–184

    Article  PubMed  CAS  Google Scholar 

  • Simon M, Seraphin B, Faye G (1995) The nuclear-encoded MSS2 gene is involved in the expression of the mitochondrial cytochrome c-oxidase subunit 2 (cox2) Biochim Biophys Acta 1228: 95–98

    Google Scholar 

  • Simon VR, Karmon SL, Pon LA (1997) Mitochondrial inheritance: cell cycle and actin cable dependence of polarized mitochondrial movements in Saccharomyces cerevisiae. Cell Motil Cytoskeleton 37: 199–210

    Article  PubMed  CAS  Google Scholar 

  • Singh KK, Sigala B, Sikder HA, Schwimmer C (2001) Inactivation of Saccharomyces cerevisiae OGGI DNA repair gene leads to an increased frequency of mitochondrial mutants. Nucleic Acids Res 29: 1381–1388

    Article  PubMed  CAS  Google Scholar 

  • Skelly PJ, Clark-Walker GD (1991) Sequence rearrangements at the ori7 region of Saccharomyces cerevisiae mitochondrial DNA. J Mol Evol 32: 439–442

    Article  PubMed  CAS  Google Scholar 

  • Small WC, Brodeur RD, Sandor A, Federova N, Li G, Butow RA, Srere PA (1995) Enzymic and metabolic studies on retrograde regulation mutants of yeast. Biochemistry 34: 5569–5576

    Article  PubMed  CAS  Google Scholar 

  • Smith MG, Simon VR, O’Sullivan H, Pon LA (1995) Organelle-cytoskeletal interactions: actin mutations inhibit meiosis-dependent mitochondrial rearrangement in the budding yeast Saccharomyces cerevisiae. Mol Biol Cell 6: 1381–1396

    PubMed  CAS  Google Scholar 

  • Sogo LF,Yaffe MP (1994) Regulation of mitochondrial morphology and inheritance by MdmlOp, a protein of the mitochondrial outer membrane. J Cell Biol 126: 1361–1373

    Article  Google Scholar 

  • Sor F, Fukuhara H (1982) Nature of an inserted sequence in the mitochondrial gene coding for the 15 S ribosomal RNA of yeast. Nucleic Acids Res 10: 1625–1633

    Article  PubMed  CAS  Google Scholar 

  • Steele DF, Butler CA, Fox TD (1996) Expression of a recoded nuclear gene inserted into yeast mitochondrial DNA is limited by mRNA-specific translational activation. Proc Natl Acad Sci USA 93: 5253–5257

    Article  PubMed  CAS  Google Scholar 

  • Stribinskis V, Gao GJ, Sulo P, Dang YL, Martin NC (1996) Yeast mitochondrial RNase P RNA synthesis is altered in an RNase P protein subunit mutant: insights into the biogenesis of a mitochondrial RNA-processing enzyme. Mol Cell Biol 16: 3429–3436

    PubMed  CAS  Google Scholar 

  • Sulo P, Groom KR, Wise C, Steffen M, Martin N (1995) Successful transformation of yeast mitochondria with RPM1: an approach for in vivo studies of mitochondrial RNase P RNA, structure, function and biosynthesis. Nucleic Acids Res 23: 856–860

    Article  PubMed  CAS  Google Scholar 

  • Suzuki CK, Suda K, Wang N, Schatz G (1994) Requirement for the yeast gene LON in intramitochondrial proteolysis and maintenance of respiration. Science 264: 273–276

    Article  PubMed  CAS  Google Scholar 

  • Tarassov IA, Entelis NS (1992) Mitochondrially imported cytoplasmic transfer RNALY, (CUU) of Saccharomyces cerevisiae - in vivo and in vitro targeting system. Nucleic Acids Res 20: 1277–1281

    Article  PubMed  CAS  Google Scholar 

  • Tarassov IA, Martin RP (1996) Mechanisms of tRNA import into yeast mitochondria: an overview. Biochimie 78: 502–510

    Article  PubMed  CAS  Google Scholar 

  • Tarassov IA, Entelis N, Martin RP (1995) Mitochondrial import of a cytoplasmic lysine-tRNA in yeast is mediated by cooperation of cytoplasmic and mitochondrial lysyl-tRNA synthetases. EMBO J 14: 3461–3471

    PubMed  CAS  Google Scholar 

  • Thorsness PE, Fox TD (1990) Escape of DNA from mitochondria to the nucleus in Saccharomyces cerevisiae. Nature 346: 376–378

    Article  PubMed  CAS  Google Scholar 

  • Thorsness PE, Fox TD (1993) Nuclear mutations in Saccharomyces cerevisiae that affect the escape of DNA from mitochondria to the nucleus. Genetics 134: 21–28

    PubMed  CAS  Google Scholar 

  • Thorsness PE, Weber ER (1996) Escape and migration of nucleic acids between chloroplasts, mitochondria, and the nucleus. Int Rev Cytol 165: 207–234

    Article  PubMed  CAS  Google Scholar 

  • Thorsness PE, White KH, Fox TD (1993) Inactivation of YME1, a member of the ftsH- SEC18–PAS1-CDC48 family of putative ATPase-encoding genes, causes increased escape of DNA from mitochondria in Saccharomyces cerevisiae. Mol Cell Biol 13: 5418–5426

    PubMed  CAS  Google Scholar 

  • Ticho BS, Getz GS (1988) The characterization of yeast mitochondrial RNA polymerase: a monomer of 150,000 Daltons with a transcription factor of 70,000 Daltons. J Biol Chem 263: 10096–10103

    PubMed  CAS  Google Scholar 

  • Tracy RL, Stern DB (1995) Mitochondrial transcription initiation: promoter structures and RNA polymerases. Curr Genet 28: 205–216

    Article  PubMed  CAS  Google Scholar 

  • Traven A, Wong JM, Xu D, Sopta M, Ingles CJ (2001) Interorganelle communication. Altered nuclear gene expression profiles in a yeast mitochondrial dna mutant. J Biol Chem 276: 4020–4927

    Article  PubMed  CAS  Google Scholar 

  • Tron T, Infossi P, Coppee JY, Colson AM (1991) Molecular analysis of revertants from a respiratory-deficient mutant affecting the center o domain of cytochrome b in Saccharomyces cerevisiae. FEBS Lett 278: 26–30

    Article  PubMed  CAS  Google Scholar 

  • Tzagoloff A, Dieckman CL (1990) Pet genes of Saccharomyces cerevisiae. Microbiol Rev 54: 211–225

    Google Scholar 

  • Tua A, Wang J, Kulpa V, Wernette CM (1997) Mitochondrial DNA topoisomerase I of Saccharomyces cerevisiae. Biochimie 79: 341–50

    Article  PubMed  CAS  Google Scholar 

  • Vanderstraeten S, Foury F (1994) Mutator mutants of the yeast mitochondrial DNA polymerase. Arch Int Physiol Biochim Biophys 102: B40

    Google Scholar 

  • Vanderstraeten S, van den Brule S, Hu J, Foury F (1998) The role of 3’- 5’ exonucleolytic proofreading and mismatch repair in yeast mitochondrial DNA error avoidance. J Biol Chem 273: 23690–23697

    Article  PubMed  CAS  Google Scholar 

  • Van Dyck L, Langer T (1999) ATP-dependent proteases controlling mitochondrial function in the yeast Saccharomyces cerevisiae. Cell Mol Life Sci 56: 825–842

    Article  PubMed  Google Scholar 

  • Van Dyck L, Pearce DA, Sherman F (1994) PIMI encodes a mitochondrial ATP-dependent protease that is required for mitochondrial function in the yeast Saccharomyces cerevisiae. J Biol Chem 269: 238–242

    PubMed  Google Scholar 

  • Vincent RD, Hofmann TJ, Zassenhaus HP (1988) Sequence and expression of NUC1, the gene encoding the mitochondrial nuclease in Saccharomyces cerevisiae. Nucleic Acids Res 16: 3297–3312

    Article  PubMed  CAS  Google Scholar 

  • Vongsamphanh R, Fortier PK, Ramotar D (2001) Pirlp mediates translocation of the yeast Apnlp endonuclease into the mitochondria to maintain genomic stability. Mol Cell Biol 21: 1647–1655

    Article  PubMed  CAS  Google Scholar 

  • Vorisek J, Toman 0 (2000) Immune-electron localization of DNA in chondriolites of Saccharomyces cerevisiae mitochondria. Folia Microbiol Prague 45: 239–242

    CAS  Google Scholar 

  • Wagner I, Arlt H, Van Dyck L, Langer T, Neupert W (1994) Molecular chaperones cooperate with PIM protease in the degradation of misfolded proteins in mitochondria. EMBO J 13: 5135–5145

    PubMed  CAS  Google Scholar 

  • Wang YH, Shadel GS (1999) Stability of the mitochondrial genome requires an amino-terminal domain of yeast mitochondrial RNA polymerase. Proc Natl Acad Sci USA 96: 8046–8051

    Article  PubMed  CAS  Google Scholar 

  • Warren G, Wickner W (1996). Organelle inheritance. Cell 84: 395–400

    Article  PubMed  CAS  Google Scholar 

  • Waters R, Mustacchi E (1974) The fate of ultraviolet-induced pyrimidine dimers in the mitochondrial DNA of Saccharomyces cerevisiae following various post-irradiation cell treatments. Biochim Biophys Acta 366: 241–150

    Article  PubMed  CAS  Google Scholar 

  • Wenzlau JM, Perlman PS (1990) Mobility of 2 optional G + C-rich clusters of the vari gene of yeast mitochondrial DNA. Genetics 126: 53–62

    PubMed  CAS  Google Scholar 

  • Wettstein-Edwards J, Ticho BS, Martin NC, Najarian D, Getz GS (1986) In vitro transcription and promoter strength analysis of five mitochondrial tRNA promoters in yeast. J Biol Chem 261: 2905–2911

    PubMed  CAS  Google Scholar 

  • Wiesenberger G, Fox TD (1997) Pet127p, a membrane-associated protein involved in stability and processing of Saccharomyces cerevisiae mitochondrial RNAs. Mol Cell Biol 17: 2816–2824

    PubMed  CAS  Google Scholar 

  • Wilcoxen SE, Peterson CR, Winkley CS, Keller MJ, Jaehning JA (1988) Two forms of RPO41-dependent RNA polymerase: regulation of the RNA polymerase by glucose repression may control yeast mitochondrial gene expression. J Biol Chem 263: 12346–12351

    PubMed  CAS  Google Scholar 

  • Williamson DH (1976) Packaging and recombination of mitochondrial DNA in vegetatively growing yeast cell. In: Bandlow W, Schweyen RJ, Thomas DY, Wolf K, Kaudewitz F (eds) Genetics, biogenesis and bioenergetics of mitochondria. De Gruyter, Berlin, pp 117–124

    Google Scholar 

  • Williamson DH, Johnston LH, Richmong KMV, Game JC (1977) Mitochondrial DNA and the heritable unit of the yeast mitochondrial genome: a review. In: Bandlow W, Schweyen RJ, Wolf K, Kaudewitz F (eds) Mitochondria 1977. De Gruyter, Berlin, pp 1–24

    Google Scholar 

  • Wilkie D (1983) Genetic and functional aspects of yeast mitochondria. In: Spencer JFT, Spencer DM, Smith ARW (eds) Yeast genetics. Fundamental and applied aspects. Springer, Berlin Heidelberg New York, pp 255–267

    Chapter  Google Scholar 

  • Wise CA, Martin NC (1991) Dramatic size variation of yeast mitochondrial RNAs suggest that RNase P can be quite small. J Biol Chem 266: 19154–19157

    PubMed  CAS  Google Scholar 

  • Wolf K (1987) Mitochondrial genes of the budding yeast Saccharomyces cerevisiae. In: Kinghorn JR (ed) Gene structure in eukaryotic microbes. Spec Publ Soc Gen Microbiol 22, IRL Press Oxford, Washington, DC, pp 41–67

    Google Scholar 

  • Wolf K, del Giudice L (1988) The variable mitochondrial genome of ascomycetes. In: Caspari EW, Scandalios JG (eds) Advances in genetics, vol 25. Academic Press, San Diego, pp 185–308

    Google Scholar 

  • Xu BJ, Clayton DA (1992) Assignment of yeast protein necessary for mitochondrial transcription initiation. Nucleic Acids Res 20: 1053–1059

    Article  PubMed  CAS  Google Scholar 

  • Yaffe MP (1995) Isolation and analysis of mitochondrial inheritance mutants from Saccharomyces cerevisiae. Methods in enzymology, vol 260. Academic Press, San Diego, pp 447–453

    Google Scholar 

  • Yaffe MP (1999a) Dynamic mitochondria. Nat Cell Biol 1: E149 - E150

    Article  PubMed  CAS  Google Scholar 

  • Yaffe MP (1999b) The machinery of mitochondrial inheritance and behavior. Science 283: 1493–1497

    Article  PubMed  CAS  Google Scholar 

  • Yang HC, Palazzo A, Swayne TC, Pon LA (1999) A retention mechanism for distribution of mitochondria during cell division in budding yeast. Curr Biol 9: 1111–1114

    Article  PubMed  CAS  Google Scholar 

  • Yasui A,Yajima H, Kobayashi T, Eker APM, Oikawa A (1992) Mitochondrial DNA repair by photolyase. Mutat Res 273: 231–236

    Google Scholar 

  • Zassenhaus HP, Denniger G (1994) Analysis of the role of the NUC1 endo/exonuclease in yeast mitochondrial DNA recombination. Curr Genet 25: 142–149

    Article  PubMed  CAS  Google Scholar 

  • Zelenaya-Troitskaya O, Perlman PS, Butow RA (1995) An enzyme in yeast mitochondria that catalyzes a step in branched-chain amino acid biosynthesis also functions in mitochondrial DNA stability. EMBO J 14: 3268–3276

    PubMed  CAS  Google Scholar 

  • Zhang X, Moye-Rowley WS (2001) Saccharomyces cerevisiae multidrug resistance gene expression inversely correlated with the status of the Fo component of the mitochondrial ATPase. J Biol Chem 276: 47844–47855

    Google Scholar 

  • Zinn AR, Pohlmann JK, Perlman PS, Butow RA (1988) In vivo double-strand breaks occur at recombinogenic G + C -rich sequences in the yeast mitochondrial genome. Proc Natl Acad Sci USA 85: 2686–2690

    Article  PubMed  CAS  Google Scholar 

  • Zweifel SG, Fangman WL (1991) A nuclear mutation reversing a biased transmission of yeast mitochondrial DNA. Genetics 128: 241–249

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wolf, K., Schäfer, B. (2004). Mitochondrial Genetics of the Budding Yeast Saccharomyces cerevisiae . In: Kück, U. (eds) Genetics and Biotechnology. The Mycota, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07426-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07426-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07667-1

  • Online ISBN: 978-3-662-07426-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation