Imaging of Tissue/Organs with Ultrasound

  • Chapter
Biological Imaging and Sensing

Abstract

By definition, ultrasound is sound with a frequency greater than 20000 cycles per second; that is, the sound is above the audible range. The principal advantages of high-frequency sound or ultrasound as a medical diagnostic tool are: 1) ultrasound can be directed in a beam, 2) it obeys the laws of reflection and refraction, and 3) it is reflected by objects of small size. The principal disadvantage of ultrasound is that it propagates poorly through a gaseous medium. When discussing any type of sound, one must understand what a cycle, wavelength, velocity, and frequencies are. A sound wave is a series of compressions and rarefactions, and these changes are frequently depicted as a sine wave, with the peak of the hill representing the pressure maximum and the nadir of the valley the pressure minimum. The combination of one compression and one rarefaction represents one cycle, and the distance between the peak compression of one cycle to the next is the wavelength. The velocity represents the speed at which sound waves travel through a particular medium. The frequency is the number of cycles in a given time. Thus, the velocity is equal to the frequency times the wavelength. The velocity at which sound travels through a medium depends on the density and elastic properties of the medium. In other words, sound travels faster through a dense medium than through a less dense substance. Velocity also depends on temperature. The velocity of sound is fairly constant for human soft tissue, approximately 1540 m/s (meters per second).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J.G. Miller, J.E. Perez, B.E. Sobel: Prog. Cardiovasc. Dis. 28, 85 (1985)

    Article  Google Scholar 

  2. J.W. Mimbs et al.: Circ. Res. 48, 49 (1980)

    Article  Google Scholar 

  3. K.K. Shung, J.M. Reid: Proc. IEEE Ultrason. Symp. CH12364-ISU, 230 (1977)

    Google Scholar 

  4. M. O’Donnell, J.W. Mimbs, J.G. Miller: J. Acoust. Soc. Am. 69, 580 (1981)

    Article  ADS  Google Scholar 

  5. J.G. Mottley, J.G. Miller: J. Acoust. Soc. Am. 83, 755 (1988)

    Article  ADS  Google Scholar 

  6. J.W. Mimbs et al.: Circ. Res. 49, 89 (1981)

    Article  Google Scholar 

  7. E.I. Madaras et al.: Ultrason. Imag. 5, 229 (1983)

    Article  Google Scholar 

  8. S.A. Wickline et al.: Circulation 72, 183 (1985)

    Article  Google Scholar 

  9. K.A. Wear, T.A. Shoup, R.L. Popp: IEEE Trans. Ultrason. Ferroelectric Freq. Control 33, 347 (1986)

    Article  Google Scholar 

  10. K. Baba, K. Satoh: Acta Obstet. Gyn. Japon. 38, 1385 (1986)

    Google Scholar 

  11. K. Baba et al.: “Non-invasive three-dimensional imaging system for the fetus in utero”, in: The Fetus as a Patient’87, ed. by K. Maeda ( Excerpta Medica, Amsterdam, 1987 )

    Google Scholar 

  12. K. Baba et al.: J. Perinat. Med. 17, 19 (1989)

    Article  Google Scholar 

  13. K. Baba, T. Okai: “Basis and principles of three-dimensional ultrasound”, in: Three-Dimensional Ultrasound in Obstetrics and Gynecology, ed. by K. Baba and D. Jurkovic, Chap. 1 ( Parthenon Publishing, Carnforth, 1997 )

    Google Scholar 

  14. K. Baba: “Development of three-dimensional ultrasound in obstetrics and gynecology”. in: 3-D Ultrasound in Obstetrics and Gynecology, ed. by E. Merz, Chap. 1 ( Lippincott Williams & Wilkins, Philadelphia, 1998 )

    Google Scholar 

  15. G. Kossoff et al.: “Principles of three-dimensional volume imaging in sonography”, in: Three-Dimensional Ultrasound in Obstetrics and Gynecology, ed. by K. Baba and D. Jurkovic, Chap. 2 ( Parthenon Publishing, Carnforth, 1997 )

    Google Scholar 

  16. K. Baba, T. Okai, S. Kozuma: Lancet 348, 1307 (1996)

    Article  Google Scholar 

  17. K. Baba et al.: Radiology 203, 571 (1997)

    Google Scholar 

  18. S. Kozuma et al., Ultrasound Obstet. Gynecol. 13, 283 (1999)

    Google Scholar 

  19. K. Baba, T. Okai: “Clinical applications of three-dimensional ultrasound”, in Three-Dimensional Ultrasound in Obstetrics and Gynecology, ed. by K. Baba and D. Jurkovic, Chap. 3 ( Parthenon Publishing, Carnforth, 1997 )

    Google Scholar 

  20. K. Baba et al.: Radiology 211, 441 (1999)

    Google Scholar 

  21. B. Maier et al.: “The psychological impact of three-dimensional fetal imaging on the fetomaternal relationship”, in: Three-Dimensional Ultrasound in Obstetrics and Gynecology ed. by K. Baba and D. Jurkovic, Chap. 7 ( Parthenon Publishing, Carnforth, 1997 )

    Google Scholar 

  22. K. Baba, K. Kinoshita: The Physics and Equipment of Ultrasound Imaging for Accurate Diagnosis ( Medical View, Tokyo, 1993 )

    Google Scholar 

  23. N. Bom et al.: Int. J. Cardiac Imaging 4, 79 (1989)

    Article  Google Scholar 

  24. K. Mitsuto: Clinic All-Round 45, No. 9, 2159 (1996)

    Google Scholar 

  25. O. Oshiro, H. Tojo, K. Chihara: Trans. Inst. Syst. Control Inf. Eng. 8, No. 8, 344 (1995)

    Google Scholar 

  26. D.H. Johnson, D.E. Dudgeon: “Apertures and arrays”, in: Array Signal Processing, Chap. 3 ( Prentice Hall, Englewood Cliffs, NJ, 1993 )

    Google Scholar 

  27. K.K. Shung, M.B. Smith, B. Tsui: “Ultrasound”, in: Principles of Medical Imaging, Chap. 2 ( Academic Press, California, 1992 )

    Google Scholar 

  28. A. Fenster, D.B. Downey: IEEE Eng. Med. Biol. Soc. 15, No. 6, 41 (1996)

    Google Scholar 

  29. O. Oshiro et al.: Trans. Inst. Syst. Cont. Inform. Eng. 13, No. 5, 244 (2000)

    Google Scholar 

  30. P.M. Kennedy, D.X. Hammer, B.A. Rockwell: Prog. Quant. Electr. 21, No 3, 155 (1997)

    Google Scholar 

  31. M. Hisaka, T. Sugiura, S. Kawata: J. Opt. Soc. Am. A., in print

    Google Scholar 

  32. M. Hisaka, T. Sugiura, S. Kawata: Jpn. J. Appl. Phys. 38, L1478 (1999)

    Article  ADS  Google Scholar 

  33. L. Wang, S. Jacques, X. Zhao: Opt. Lett. 20, 629 (1995)

    Article  ADS  Google Scholar 

  34. L. Wang, X. Zhao: Appl. Opt. 36, 7277 (1997)

    Article  ADS  Google Scholar 

  35. S. Lévêque et al.: Opt. Lett. 24, 181 (1999)

    Article  Google Scholar 

  36. K. Ishihara et al.: “High-speed digital subtraction echography: principle and preliminary application to arteriosclerosis, arrhythmia and blood flow visualization”, Proc. 1990 IEEE Ultrasonics Symposium, p. 1473 ( Honolulu, HI, Dec. 1990 )

    Google Scholar 

  37. K. Ishihara et al.: “Principle of high-speed digital subtraction echography and the potential for clinical applications”, Jpn. J. Appl. Phys. 30, Suppl. 30–1, 322

    Google Scholar 

  38. K. Ishihara: “Development of high-speed digital subtraction echography and clinical application in the field of circulation”, Osaka Daigaku Igakuzasshi (in Jpn) 43, No. 5, 61 (1991)

    Google Scholar 

  39. K. Ishihara et al.: “Microballoon as ultrasonic sensor-actuator in vivo”, Jap. Soc. Prof. Eng. (in Jpn) 56, No. 12, 2152 (1990)

    Article  Google Scholar 

  40. K. Ishihara et al.: “Drug delivery system controlled by resonant ultrasonics”, Med. Biol. Eng. Comp. 29, Suppl. Part 1, 151 (1991)

    Google Scholar 

  41. K. Ishihara et al.: “New approach to noninvasive manometry based on pressure dependent resonant shift of elastic microcapsules in ultrasonic frequency characteristics”, Jpn. J. Appl. Phys. 27, Suppl. 27–1, 125 (1988)

    Google Scholar 

  42. M. Minnaert: “On musical air-bubbles and the sounds of running water”, Phil. Mag. 16, 235 (1933)

    Google Scholar 

  43. N. Negishi et al.: “Ultrasonic control of drug releasing”, Jpn. J. Artificial 0rgans (in Jpn) 13, No. 3, 1205 (1984)

    Google Scholar 

  44. K. Ishihara et al.: “Experimental study of noninvasive pressure measurement method based on pressure dependent resonant shift in ultrasonic frequency characteristics”, Jpn. J. Med. Ultrasonics (in Jpn) 15, No. 2, 107 (1988)

    Google Scholar 

  45. K. Ishihara et al.: “Noninvasive and precise motion detection for micromachines using high-seed digital subtraction echography”, Proc. IEEE Micro Electro Mechanical Systems, Jan.–Feb. 1991, p. 176, Nara, Japan (1991)

    Google Scholar 

  46. K. Masuda, K. Ishihara: “Estimation of collapsed microcapsules for drug delivery system using successive echograms”, Proc. of World Cong. on Med. Physics and Biomed. Eng., Jul. 2000, Chicago, No. 5004–59481 (CD-ROM)

    Google Scholar 

  47. K. Masuda, K. Ishihara: “Collapse monitoring of microcapsules and its quantitative evaluation from successive echograms”, Proc. of 1st International Symposium on Ultrasound Contrast Imaging, 1999, Kyoto, p. 120

    Google Scholar 

  48. D.L. Miller: Ultrasound Med. Biol. 13, 443 (1987)

    Article  Google Scholar 

  49. S.B. Barnett et al.: Ultrasound Med. Biol. 23, 805 (1997)

    Article  Google Scholar 

  50. S.B. Barnett et al.: Ultrasound Med. Biol. 26, 355 (2000)

    Article  Google Scholar 

  51. S.B. Barnett, G. Kossoff, M.J. Edwards: Med. J. Aust. 160, 33 (1994)

    Google Scholar 

  52. D.L. Miller, R.M. Thomas: J. Acoust. Soc. Am. 93, 3475 (1993)

    Article  ADS  Google Scholar 

  53. M.W. Miller, D.L. Miller, A.A. Brayman: Ultrasound Med. Biol. 22, 1134 (1996)

    Google Scholar 

  54. N. Nanda, R. Schlief, B. Goldberg: Advances in Echo Imaging Using Contrast Enhancement, 2nd edn. ( Kluwer, Dordrecht, 1997 )

    Book  Google Scholar 

  55. L. Lagneaux et al.: Exp. Hematol. 28, 1503 (2000)

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hori, M., Masuyama, T., Baba, K., Ohshiro, O., Ishihara, K., Kondo, H. (2004). Imaging of Tissue/Organs with Ultrasound. In: Furukawa, T. (eds) Biological Imaging and Sensing. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06081-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06081-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07866-8

  • Online ISBN: 978-3-662-06081-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation