Regulation of Mitochondrial Gene Expression

  • Chapter
Biochemistry and Molecular Biology

Part of the book series: The Mycota ((MYCOTA,volume 3))

Abstract

The rudimentary genetic system of mitochondria retains only a few components of its ancestral prokaryotic genetic system. This physically and functionally distinct organellar genetic system is completely dependent upon the nucleus, since it produces only the tRNAs and rRNAs and almost none of the proteins required for a minimal protein synthesis system or for DNA replication and gene expression. The mitochondrial genome encodes mainly a few hydrophobic proteins, components of the inner mitochondrial respiratory membrane, and the genes for most other mitochondrial proteins, including the majority of the proteins required for the respiratory system, are expressed in the nucleus. Mitochondria are the outcome of one of the major steps of eukaryotic cell evolution, the result of an endosymbiosis with a member of the the α-proteobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 212.93
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 261.67
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Agsteribbe E, Kroon AM, van Bruggen EFJ (1972) Circular DNA from mitochondria of Neurospora crassa. Biochim Biophys Acta 269:299–303

    Article  PubMed  CAS  Google Scholar 

  • Andersson SG, Zomorodipour A, Andersson JO, Sicheritz-Pontén T, Alsmark UC, Podowski RM, Näslund AK, Eriksson AS, Winkler HH, Kurland CG (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396:133–140

    Article  PubMed  CAS  Google Scholar 

  • Attardi G, Schatz G (1988) Biogenesis of mitochondria. Annu Rev Cell Biol 4:289–333

    Article  PubMed  CAS  Google Scholar 

  • Biswas TK, Getz GS (1986) Nucleotides flanking the promoter sequence influence the transcription of the yeast mitochondrial gene coding for ATPase subunit 9. Proc Natl Acad Sci USA 83:270–274

    Article  PubMed  CAS  Google Scholar 

  • Biswas TK, Ticho B, Getz GS (1987) Characterization of a yeast mitochondrial promoter by deletion mutagenesis. J Biol Chem 262:13690–13696

    PubMed  CAS  Google Scholar 

  • Bittner-Eddy P, Monroy A, Brambl R (1994) Expression of mitochondrial genes in the germinating conidia of Neurospora crassa. J Mol Biol 235:881–897

    Article  PubMed  CAS  Google Scholar 

  • Bonnefoy N, Bsat N, Fox TD (2001) Mitochondrial translation of Saccharomyces cerevisiae COX2 mRNA is controlled by the nucleotide sequence specifying the pre-Cox2p leader peptide. Mol Cell Biol 21:2359–2372

    Article  PubMed  CAS  Google Scholar 

  • Breitenberger CA, Browning KS, Alzner-DeWeerd B, RajBhandary UL (1985) RNA processing in Neurospora crassa mitochondria: use of transfer RNA sequences as signals. EMBO J 4:185–195

    PubMed  CAS  Google Scholar 

  • Burger G, Werner S (1985) The mitochondrial URF1 gene in Neurospora crassa has an intron that contains a novel type of URF. J Mol Biol 186:231–242

    Article  PubMed  CAS  Google Scholar 

  • Burger G, Helmer Citterich MH, Nelson MA, Werner S, Macino G (1985) RNA processing in Neurospora crassa mitochondria: transfer RNAs punctuate a large precursor transcript. EMBO J 4:197–204

    PubMed  CAS  Google Scholar 

  • Chen B, Kubelik AR, Mohr S, Breitenberger CA (1996) Cloning and characterization of the Neurospora crassa cyt-5 gene. J Biol Chem 271:6537–6544

    Article  PubMed  CAS  Google Scholar 

  • Clayton DA, Brambl R (1972) Detection of circular DNA from mitochondria of Neurospora crassa. Biochem Biophys Res Commun 46:1477–1482

    Article  PubMed  CAS  Google Scholar 

  • Coffin JW, Dhillon R, Ritzel RG, Nargang FE (1997) The Neurospora crassa cya-5 nuclear gene encodes a protein with a region of homology to the Saccharomyces cerevisiae PET309 protein and is required in a post-transcriptional step for the expression of the mitochondrially encoded COX1 protein. Curr Genet 32:273–280

    Article  PubMed  CAS  Google Scholar 

  • Constanzo MC, Fox TD (1988) Specific translational activation by nuclear gene products occurs in the 5’ untranslated leader of a yeast mitochondrial mRNA. Proc Natl Acad Sci USA 85:2677–2681

    Article  Google Scholar 

  • Constanzo MC, Fox TD (1990) Control of mitochondrial gene expression in Saccharomyces cerevisiae. Annu Rev Genet 24:91–113

    Article  Google Scholar 

  • Costanzo MC, Bonnefoy N, Williams EH, Clark-Walker GD, Fox TD (2000) Highly diverged homologs of Saccharomyces cerevisiae mitochondrial mRNA-specific translational activators have orthologous functions in other budding yeasts. Genetics 154:999–1012

    PubMed  CAS  Google Scholar 

  • Cummings DJ, Domenico JM, Nelson J, Sogin ML (1989) DNA sequence, structure, and phylogenetic relationship of the small subunit rRNA coding region of mitochondrial DNA from Podospora anserina. J Mol Evol 28:232–241

    Article  PubMed  CAS  Google Scholar 

  • Dekker PJ, Stuurman J, van Oosterum K, Grivell LA (1992) Determinants for binding of a 40kDa protein to the leaders of yeast mitochondrial mRNAs. Nucleic Acids Res 20:2647–2655

    Article  PubMed  CAS  Google Scholar 

  • Denslow ND, O’Brien TW, Michaels GS, Montoya J, Attardi G (1989) Mechanism of mRNA binding to bovine mitochondrial ribosomes. J Biol Chem 264:8328–8338

    PubMed  CAS  Google Scholar 

  • De Vries S, Grivell LA (1988) Purification and characterization of a rotenone-insensitive NADH:Q6 oxidoreductase from mitochondria of Saccharomyces cerevisiae. Eur J Biochem 176:377–384

    Article  PubMed  Google Scholar 

  • De Vries H, Haima P, Brinker M, de Jonge JC (1985) The Neurospora mitochondrial genome: The region coding for the polycistronic cytochrome oxidase subunit I transcript is preceded by a transfer RNA gene. FEBS Lett 179:337–342

    Article  PubMed  Google Scholar 

  • Dieckmann CL, Staples RR (1994) Regulation of mitochondrial gene expression Saccharomyces cerevisiae. Int Rev Cytol 152:145–181

    Article  PubMed  CAS  Google Scholar 

  • Draper DE (1999) Themes in RNA-protein recognition. J Mol Biol 293:255–270

    Article  PubMed  CAS  Google Scholar 

  • Dunstan HM, Green-Willms NS, Fox TD (1997) In vivo analysis of Saccharomyces cerevisiae COX2 mRNA of 5’-untranslated leader functions in mitochondrial translation initiation and translational activation. Genetics 147:87–100

    PubMed  CAS  Google Scholar 

  • Edwards JC, Levens D, Rabinowitz M (1983) Analysis of transcriptional initiation of yeast mitochondrial DNA in a homologous in vitro transcription system. Cell 31:337–346

    Article  Google Scholar 

  • Elzinga SDJ, Bednarz AL, van Olsterum K, Dekker PJT, Grivell LA (1993) Yeast mitochondrial NAD+-dependent isocitrate dehydrogenase is an RNA-binding protein. Nucleic Acids Res 21:5328–5331

    Article  PubMed  CAS  Google Scholar 

  • Fernet C, Claisse M, Clark-Walker GD (2003) The mitochondrial genome of Debaryomyces (Schwanniomyces) occidentalis encodes subunits of NADH dehydrogenase complex I. Mitochondrion 2:267–275

    Article  PubMed  CAS  Google Scholar 

  • Fox TD (1996a) Translational control of endogenous and recoded nuclear genes in yeast mitochondria: regulation and membrane targeting. Experimentia 52:1130–1135

    Article  CAS  Google Scholar 

  • Fox TD (1996b) Genetics of mitochondrial translation. In: Hershey JWB, Matthews MB, Sonenberg N (eds) Translational control. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 733–758

    Google Scholar 

  • Galagan JE, Calvo SE, Borkovich KA et al. (2003) The genome sequence of the filamentous fungus Neu-rospora crassa. Nature 422:859–868

    Article  PubMed  CAS  Google Scholar 

  • Green-Willms NS, Fox TD, Costanzo MC (1998) Functional interactions between yeast mitochondrial ribosomes and mRNA 5’ untranslated leaders. Mol Cell Biol 18: 1826–1834

    PubMed  CAS  Google Scholar 

  • Green-Willms NS, Butler CA, Dunstan HM, Fox TD (2001) Petlllp, an inner membrane-bound translational activator that limits expression of the Saccharomyces cerevisiae mitochondrial gene COX2. J Biol Chem 276: 6392–6397

    Article  PubMed  CAS  Google Scholar 

  • Grivell LA (1995) Nucleo-mitochondrial interactions in mitochondrial gene expression. Crit Rev Biochem Mol Biol 30:121–164

    Article  PubMed  CAS  Google Scholar 

  • Haffter P, McMullin TW, Fox TD (1990) A genetic link between an mRNA-specific translational activator and the translation system in yeast mitochondria. Genetics 125:494–503

    Google Scholar 

  • Hollenberg CP, Borst P, Thuring RWJ, van Bruggen EFJ (1969) Size, structure and genetic complexity of yeast mitochondrial DNA. Biochim Biophys Acta 186:417–419

    Article  PubMed  CAS  Google Scholar 

  • Islas-Osuna MA, Ellis TP, Marnell LL, Mittelmeier TM, Dieckmann CL (2002) Cbpl is required for translation of the mitochondrial cytochrome b mRNA of Saccharomyces cerevisiae. J Biol Chem 277:37987–37990

    Article  PubMed  CAS  Google Scholar 

  • Jaehning JA (1993) Mitochondrial transcription: Is a pattern emerging? Mol Microbiol 8:1–4

    Article  PubMed  CAS  Google Scholar 

  • Jang S-H, Jaehning JA (1994) Mechanisms of mitochondrial transcription. In: Conaway RC, Conaway JW (eds) Transcription: mechanisms and regulation. Raven Press, New York, pp 171–184

    Google Scholar 

  • Karlberg O, Andersson SGE (2003) Mitochondrial gene history and mRNA localization: is there a correlation? Nat Rev Genet 4:391–397

    Article  PubMed  CAS  Google Scholar 

  • Karlberg O, Canbäck B, Kurland CG, Andersson SGE (2000) The dual origin of the yeast mitochondrial proteome. Yeast 17:170–187

    Article  PubMed  CAS  Google Scholar 

  • Karlok MA, Jang S-H, Jaehning JA (2002) Mutations in the yeast mitochondrial RNA polymerase specificity factor, Mtf1, verify an essential role in promoter utilization. J Biol Chem 277:28143–28149

    Article  PubMed  CAS  Google Scholar 

  • Kennell JC, Lambowitz AM (1989) Development of an in vitro transcription system for Neurospora crassa mitochondrial DNA and identification of transcription initiation sites. Mol Cell Biol 9:3603–3613

    PubMed  CAS  Google Scholar 

  • Kennell JC, Collins RA, Griffiths AJF, Nargang FE (2003) Mitochondrial genetics of Neurospora. In: Kück U (ed) The Mycota II. Genetics and biotechnology, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kleidon J, Plesofsky N, Brambl R (2003) Transcripts and transcript-binding proteins in mitochondria of Neurospora crassa. Mitochondrion 2:345–360

    Article  PubMed  CAS  Google Scholar 

  • Koc EC, Spremulli LL (2003) RNA-binding proteins of mammalian mitochondria. Mitochondrion 2:277–291

    Article  PubMed  CAS  Google Scholar 

  • Krause-Buchholz U, Tzschoppe K, Paret C, Ostermann K, Rödel G (2000) Identification of functionally important regions of Saccharomyces cerevisiae mitochondrial translational activator Cbs1p. Yeast 16:353–363

    PubMed  CAS  Google Scholar 

  • Kubelik AR, Kennell JC, Aikins RA, Lambowitz AM (1990) Identification of Neurospora mitochondria promoters and analysis of synthesis of the mitochondrial small rRNA in wild-type and the promoter mutant [poky]. J Biol Chem 265:4515–4526

    PubMed  CAS  Google Scholar 

  • Lisowsky T (1990) Molecular analysis of the mitochondrial transcription factor MTF2 of Saccharomyces cerevisiae. Mol Gen Genet 220:186–190

    Article  PubMed  CAS  Google Scholar 

  • Maleszka R, Skelly PJ, Clark-Walker GD (1991) Rolling circle replication of DNA in yeast mitochondria. EMBO J 10:3923–3929

    PubMed  CAS  Google Scholar 

  • Maleszka R, Clark-Walker GD (1992) In vivo conformation of mitochondrial DNA in fungi and zoosporic moulds. Curr Genet 22:341–344

    Article  PubMed  CAS  Google Scholar 

  • Manthey GM, McEwen JE (1995) The product of the nuclear gene PET309 is required for translation of mature mRNA and stability or production of intron-containing RNAs derived from the mitochondrial COX1 locus of Saccharomyces cerevisiae. EMBO J 14:4031–4043

    PubMed  CAS  Google Scholar 

  • Manthey GM, Przybyla-Zawislak BD, McEwen JE (1998) The Saccharomyces cerevisiae Pet309 protein is embedded in the mitochondrial inner membrane. Eur J Biochem 255:156–161

    Article  PubMed  CAS  Google Scholar 

  • McMullin TW, Fox TD (1993) COX3 mRNA-specific translational activator proteins are associated with the inner mitochondrial membrane in Saccharomyces cerevisiae. J Biol Chem 268:11737–11741

    PubMed  CAS  Google Scholar 

  • Michaelis U, Körte A, Rödel G (1991) Association of cytochrome b translational activator proteins with the mitochondrial membrane: implications for cytochrome b expression in yeast. Mol Gen Genet 230:177–185

    Article  PubMed  CAS  Google Scholar 

  • Mittelmeier TM, Dieckmann CL (1993) In vivo analysis of sequences necessary for CBP1-dependent accumulation of cytochrome b transcripts in yeast mitochondria. Mol Cell Biol 13:4202–4213

    Google Scholar 

  • Montoya J, Gaines GL, Attardi G (1983) The pattern of transcription of the human mitochondrial rRNA genes reveals two overlap** transcription units. Cell 34:151–159

    Article  PubMed  CAS  Google Scholar 

  • Mueller DM, Getz GS (1986) Transcriptional regulation of the mitochondrial genome of yeast Saccharomyces cerevisiae. J Biol Chem 261:11756–11764

    PubMed  CAS  Google Scholar 

  • Mulero JJ, Fox TD (1993) PET111 acts in the 5’-leader of the Saccharomyces cerevisiae mitochondrial COX2 mRNA to promote its translation. Genetics 133: 509–516

    PubMed  CAS  Google Scholar 

  • Naithani S, Saracco SA, Butler CA, Fox TD (2003) Interactions among COX1, COX2, and COX3 mRNA-specific translational activator proteins on the inner surface of the mitochondrial inner membrane of Saccharomyces cerevisiae. Mol Biol Cell 14:324–333

    Article  PubMed  CAS  Google Scholar 

  • Nosek J, Fukuhara H (1994) NADH dehydrogenase subunit genes in the mitochondrial DNA of yeasts. J Bacteriol 176:5622–5630

    PubMed  CAS  Google Scholar 

  • Papadopoulou B, Dekker P, Blom J, Grivell LA (1990) A 40-kd protein binds specifically to the 5’-untranslated regions of yeast mitochondrial mRNAs. EMBO J 9:4135–4143

    PubMed  CAS  Google Scholar 

  • Pratje E, Mannhaupt G, Michaelis G, Beyreuther K (1983) A nuclear mutation prevents processing of a mito-chondrially encoded membrane protein in Saccharomyces cerevisiae. EMBO J 2:1049–1054

    PubMed  CAS  Google Scholar 

  • Rodeheffer MS, Shadel GS (2003) Multiple interactions involving the amino-terminal domain of yeast mtRNA polymerase determine the efficiency of mitochondrial protein synthesis. J Biol Chem 278:18695–18701

    Article  PubMed  CAS  Google Scholar 

  • Rodeheffer MS, Boone BE, Bryan, AC, Shadel GS (2001) Namlp, a protein involved in RNA processing and translation, is coupled to transcription through an interaction with yeast mitochondrial RNA polymerase. J Biol Chem 276:8616–8622

    Article  PubMed  CAS  Google Scholar 

  • Rodel G (1986) Two yeast nuclear genes, CBS1 and CBS2, are required for translation of mitochondrial transcripts bearing the 5’-untranslated COB leader. Curr Genet 11:41–45

    Article  PubMed  CAS  Google Scholar 

  • Rödel G, Fox TD (1987) The yeast nuclear gene CBS1 is required for translation of mitochondrial mRNAs bearing the cob 5’ untranslated leader. Mol Gen Genet 206:45–50

    Article  PubMed  Google Scholar 

  • Sanchirico ME, Fox TD, Mason TL (1998) Accumulation of mitochondrially synthesized Saccharomyces cerevisiae Cox2p and Cox3p depends on targeting information in untranslated portions of their mRNAs. EMBO J 17:5796–5804

    Article  PubMed  CAS  Google Scholar 

  • Sevarino KA, Poyton RO (1980) Mitochondrial biogenesis: Identification of a precursor to yeast cytochrome c oxidase subunit II, an integral polypeptide. Proc Natl Acad Sci USA 77:142–146

    Article  PubMed  CAS  Google Scholar 

  • Siep M, van Oosterum K, Neufeglise H, van der Spek H, Grivell LA (2000) Mss51p, a putative translational activator of cytochrome c oxidase subunit-1 (COX1) mRNA, is required for synthesis of Coxlp in Saccharomyces cerevisiae. Curr Genet 37:213–220

    Article  PubMed  CAS  Google Scholar 

  • Steele DF, Butler CA, Fox TD (1996) Expression of a recoded nuclear gene inserted into yeast mitochondrial DNA is limited by mRNA-specific translational activation. Proc Natl Acad Sci USA 93:5253–5257

    Article  PubMed  CAS  Google Scholar 

  • Stripecke R, Oliveira CC, McCarthy JEG, Hentze MW (1994) Proteins binding to 5’ untranslated region sites: a general mechanism for translational regulation of mRNAs in human and yeast cells. Mol Cell Biol 14:5898–5909

    Article  PubMed  CAS  Google Scholar 

  • Tzagoloff A, Myers AM (1986) Genetics of mitochondrial biogenesis. Annu Rev Biochem 55:249–285

    Article  PubMed  CAS  Google Scholar 

  • Videira A (1998) Complex I from the fungus Neurospora crassa. Biochim Biophys Acta 1364:89–100

    Article  PubMed  CAS  Google Scholar 

  • Wallis MG, Groudinsky O, Slonimski PP, Dujardin G (1994) The NAM1 protein (NAM1p), which is selectively required for cox1, cytb and atp6 transcript processing/stabilization, is located in the yeast mitochondrial matrix. Eur J Biochem 222:27–32

    Article  PubMed  CAS  Google Scholar 

  • Weber ER, Dieckmann CL (1990) Identification of the CBP1 polypeptide in mitochondrial extracts from Saccharomyces cerevisiae. J Biol Chem 265:1594–1600

    PubMed  CAS  Google Scholar 

  • Weiss H, Friedrich T, Hofhaus G, Preis D (1991) The respiratory-chain NADH dehydrogenase (complex I) of mitochondria. Eur J Biochem 197:563–576

    Article  PubMed  CAS  Google Scholar 

  • Wiesenberger G, Costanzo MC, Fox TD (1995) Analysis of the Saccharomyces cerevisiae mitochondrial COX3 mRNA 5’ untranslated leader: translational activation and mRNA processing. Mol Cell Biol 15:3291–3300

    PubMed  CAS  Google Scholar 

  • Williams EH, Fox TD (2003) Antagonistic signals within the COX2 mRNA coding sequence control its translation in Saccharomyces cerevisiae mitochondria. RNA 9(4):419–431

    Article  PubMed  CAS  Google Scholar 

  • Williamson D (2002) The curious history of yeast mitochondrial DNA. Nat Rev Genet 3:475–481

    Article  PubMed  CAS  Google Scholar 

  • Zuker M (1995–2003, copyright date) mfold, version 3.1 (online) URL: http://www.bioinfo.math.rpi.edu/~mfold/rna/form1.cgi (3 Aug 2002, last date accessed)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brambl, R. (2004). Regulation of Mitochondrial Gene Expression. In: Brambl, R., Marzluf, G.A. (eds) Biochemistry and Molecular Biology. The Mycota, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06064-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06064-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07652-7

  • Online ISBN: 978-3-662-06064-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation