• 1115 Accesses

Abstract

States are by definition (III: 2.2.18) normed, positive linear functionals on an algebra A of observables. If the dimension of the underlying space is finite, A = B(ℂn), then all linear functionals are of the form Aa → Tr ρa ≡ (ρ|a), ρB(ℂn), and B(ℂn) is its own dual space. The inequality of (1.4.18;4),

$$|\left( {\rho |a} \right)| \leqslant \left\| a \right\|{\left\| \rho \right\|_1},{\left\| \rho \right\|_1} = Tr{\left( {{\rho ^*}\rho } \right)^{1/2}}$$
(2.1)

then holds, and is optimal in the sense that

$$\mathop {\sup }\limits_{{{\left\| \rho \right\|}_1} = 1} |\left( {\rho |a} \right)| = \left\| a \right\|,\mathop {\sup }\limits_{\left\| a \right\| = 1} |\left( {\rho |a} \right)| = {\left\| \rho \right\|_1}.$$
(2.2)

The heuristic concepts of purer and more chaotic states can be made mathematically precise with reference to a lattice structure of the classes of equivalent density matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
EUR 9.99
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 96.29
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 139.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • A. Wehrl: How Chaotic is a State of a Quantum System? Rep. Math. Phys. 6, 15–28, 1974.

    Article  MathSciNet  ADS  Google Scholar 

  • A. Uhlmann: Endlichdimensionale Dichtermatrizen, I. Wiss. Z. Karl-Marx-Univ. Leipzig 21, 421, 1972;

    MathSciNet  Google Scholar 

  • A. Uhlmann: Endlichdimensionale Dichtermatrizen, II. Ibid. 22, 139, 1973.

    MathSciNet  Google Scholar 

  • E.H. Lieb: Some Convexity and Subadditivity Properties of Entropy. Bull. Amer. Math. Soc. 81, 1–13, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  • B. Simon: Trace Ideals and their Applications. London and New York, Cambridge Univ. Press, 1979.

    MATH  Google Scholar 

  • B. Baumgartner: Classical Bounds on Quantum Partition Functions. Commun. Math. Phys. 75, 25–41, 1980.

    Article  MathSciNet  ADS  Google Scholar 

  • F.A. Berezin: Wick and Anti-Wick Operator Symbols. Math. USSR Sbornik 15 577–606, 1911. (Translation of Vikovskie i antivikovskie simboly operatorov. Mat. Sbornik 86(128), 578–610, 1971.)

    Google Scholar 

  • G. Lindblad: Entropy, Information, and Quantum Measurements. Commun. Math. Phys. 33, 305–322, 1973.

    Article  MathSciNet  ADS  Google Scholar 

  • U. Umegaki: Conditional Expectation in an Operator Algebra. Kodai Math. Seminar. Rep. 14, 59–85, 1962.

    Article  MathSciNet  MATH  Google Scholar 

  • H. Araki: RIMS preprint 190, Kyoto, 1975.

    Google Scholar 

  • R. Griffiths: Microcanonical Ensemble in Quantum Statistical Mechanics. J. Math. Phys. 6, 1447–1461, 1965.

    Article  ADS  Google Scholar 

  • A.S. Wightman: Convexity and the Notion of Equilibrium State in Thermodynamics and Statistical Mechanics. In: Convexity in the Theory of Lattice Gases, R. Israel, ed. Princeton, Princeton Univ. Press, 1979.

    Google Scholar 

  • H.D. Maison: Analyticity of the Partition Function for Finite Quantum Systems. Commun. Math. Phys. 22, 166–172, 1971.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • E.H. Lieb: The Classical Limit of Quantum Spin Systems. Commun. Math. Phys. 31, 326341, 1973.

    Google Scholar 

  • A.S. Wightman, op. cit. in (2.3.39)

    Google Scholar 

  • W. Thirring: Bounds on the Entropy in Terms of One Particle Distributions. Lett. Math. Phys. 4, 67–70, 1980.

    Article  MathSciNet  ADS  Google Scholar 

  • K. Huang: Statistical Mechanics. New York, Wiley, 1963.

    Google Scholar 

  • F. Reif: Fundamentals of Statistical and Thermal Physics. New York, McGraw-Hill, 1965.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thirring, W. (2002). Thermostatics. In: Quantum Mathematical Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05008-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05008-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07711-1

  • Online ISBN: 978-3-662-05008-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation