• 1122 Accesses

Abstract

The quantum-mechanical treatment of the problem of two particles interacting through a 1 /r potential follows the outlines of the classical theory (I: §4.2). It starts with the Hamiltonian

$$H = \frac{{|{P_1}{|^2}}}{{2{m_1}}} + \frac{{|{P_2}{|^2}}}{{2{m_2}}} + \frac{\alpha }{{|{X_1} - {X_2}|}},\alpha = {e_1}{e_2},$$
(4.1)

which acts a priori on H = H 1H 2, where H i , is the Hilbert space of the i-th particle. The system can be decomposed into two independent parts by the

The hydrogen atom is so simple that a complete mathematical analysis can be made. This analysis was a watershed of atomic physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. K. Osterwalder, ed: Mathematical Problems in Theoretical Physics. Proc. Int. Conf. on Math. Phys. (Lausanne, Switzerland, Aug. 1979 ). Berlin-Heidelberg-New York, Springer, 1980.

    Google Scholar 

  2. M.J. Englefield: Group Theory and the Coulomb Problem. New York, Interscience, 1972.

    MATH  Google Scholar 

  3. H. Grosse, H.-R. Grümm, H. Narnhofer, and W. Thirring: Algebraic Theory of Coulomb Scattering. Acta Phys. Austr. 40, 97–103, 1974.

    Google Scholar 

  4. E. Nelson: Time-Ordered Operator Products of Sharp-Time Quadratic Forms. J. Func. Anal. 11, 211–219, 1972.

    Article  MATH  Google Scholar 

  5. W. Faris and R. Lavine: Commutators and Self-Adjointness of Hamiltonian Operators. Commun Math. Phys. 35, 39–48, 1974.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. R. Lavine: Spectral Densities and Sojourn Times. In: Atomic Scattering Theory, J. Nuttall, ed. London, Ontario, University of Western Ontario Press, 1978.

    Google Scholar 

  7. R. Lavine and M. O’Carroll: Ground State Properties and Lower Bounds for Energy Levels of a Particle in a Uniform Magnetic Field and External Potential. J. Math. Phys. 18, 1908–1912, 1977.

    Article  MathSciNet  ADS  Google Scholar 

  8. H. Narnhofer and W. Thirring: Convexity Properties for Coulomb Systems. Acta Phys. Austr. 41, 281–297, 1975.

    MathSciNet  Google Scholar 

  9. T. Kinoshita: Ground State of the Helium Atom. Phys. Rev. 105, 1490–1502, 1957.

    Article  ADS  MATH  Google Scholar 

  10. C.L. Pekeris: Ground State of Two-Electron Atoms. Phys. Rev. 112, 1649–1658, 1958.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. K. Frankowski and C.L. Pekeris: Logarithmic Terms in the Wave Function of the Ground State of Two-Electron Atoms.Phys. Rev. 146, 46–49, 1966.

    Article  Google Scholar 

  12. R. Ahlrichs, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and J.D. Morgan: Bounds on the Decay of Electron Densities with Screening. Phys. Rev. A23, 2106, 1981.

    Article  MathSciNet  ADS  Google Scholar 

  13. S. Agmon: Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of N-body Schrödinger operators. Mathematical Notes, vol. 29. Tokyo, University of Tokyo Press, 1982.

    Google Scholar 

  14. S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and T.O. Sorensen: The electron density is smooth away from the nuclei. Commun. Math. Phys. 228, 401–415, 2002.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. W. Faris: Inequalities and Uncertainty Principles. J. Math. Phys. 19, 461–466, 1978.

    Article  MathSciNet  ADS  Google Scholar 

  16. D.B. Pearson: Singular Continuous Measures in Scattering Theory. Commun. Math. Phys. 60, 13–36, 1978.

    Article  ADS  MATH  Google Scholar 

  17. L. Faddeev: Mathematical Aspects of the Three-Body Problem in the Quantum Scattering Theory. Translation of Trudy Steklov Math. Inst., vol. 69, 1963. Jerusalem, Israel Program for Scientific Translation. 1965.

    Google Scholar 

  18. J. Ginibre and M. Moulin: Hilbert Space Approach to the Quantum Mechanical Three-Body Problem. Ann. Inst. H. Poincaré 21A, 97–145, 1974.

    MathSciNet  Google Scholar 

  19. I.M. Sigal: Mathematical Foundations of Quantum Scattering Theory for Multiparticle Systems. Memoirs of the Amer. Math. Soc. 16, no. 209. Providence, American Mathematical Society, 1978.

    Google Scholar 

  20. R. Blankenbecler and R. Sugar: Variational Upper and Lower Bounds for Multichannel Scattering. Phys. Rev. 136B, 472–491, 1964.

    Article  MathSciNet  ADS  Google Scholar 

  21. L. Spruch and L. Rosenberg: Upper Bounds on Scattering Lengths for Static Potentials. Phys.Rev. 116, 1034–1040, 1959.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. L. Rosenberg and L. Spruch: Subsidiary Minimum Principles for Scattering Parameters. Phys.Rev. A10, 2002–2015, 1974.

    Article  MathSciNet  ADS  Google Scholar 

  23. W. Hunziker: On the Spectra of Schrödinger Multiparticle Hamiltonians. Hely. Phys. Acta 39, 451–462, 1966.

    MathSciNet  MATH  Google Scholar 

  24. C. Van Winter: Theory of Finite Systems of Particles I. The Green Function. Mat-Fys. Scr. Danske Vid. Selsk. 2, No. 8, 1, 1964.

    Google Scholar 

  25. G.M. Zhislin: Issledovaniye Spektra Operatora Shredingera dlya Sistemy Mnogikh Chastits. Trudy Mosk. Mat. Obs. 9, 81–120, 1960.

    Google Scholar 

  26. S. Weinberg: Systematic Solution of Multiparticle Scattering Problems. Phys. Rev. 133B, 232–256, 1964.

    Article  MathSciNet  ADS  Google Scholar 

  27. V. Enss: A Note on Hunziker’s Theorem. Commun. Math. Phys. 52, 233–238, 1977.

    Article  MathSciNet  ADS  Google Scholar 

  28. E. Balslev and J.M. Combes. Spectral Properties of Many-Body Schrödinger Operators with Dilatation-Analytic Interactions. Commun. Math. Phys. 22, 280–294, 1971.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. B. Simon: Resonances in n-Body Quantum Systems with Dilation Analytic Potentials and the Foundations of Time-Dependent Perturbation Theory. Ann. Math. 97, 247–274, 1973.

    Article  MATH  Google Scholar 

  30. B. Simon: N-Body Scattering in the Two-Cluster Region. Commun. Math. Phys. 58, 205–210, 1978.

    Article  ADS  Google Scholar 

  31. V. Enss: Two-Cluster Scattering of N Charged Particles. Commun. Math. Phys. 65, 151–165, 1979.

    Article  MathSciNet  ADS  Google Scholar 

  32. J.M. Combes and H. Narnhofer: private communication for the proof used here.

    Google Scholar 

  33. H. Grosse, H. Narnhofer, and W. Thirring: Accurate Determination of the Scattering Legth of Electrons on p Atoms. J. Phys. B12, L189 - L192, 1979.

    ADS  Google Scholar 

  34. P. Hertel, E.H. Lieb, and W. Thirring: Lower Bound to the Energy of Complex Atoms. J. Chem. Phys. 62, 3355–3356, 1975.

    Article  ADS  Google Scholar 

  35. E.H. Lieb and B. Simon: The Thomas-Fermi Theory of Atoms, Molecules and Solids. Adv. Math. 23, 22–116, 1977.

    Article  MathSciNet  Google Scholar 

  36. S.T. Epstein: Ground-State Energy of a Molecule in the Adiabatic Approximation. J. Chem. Phys. 44 838–839, 1966; erratum, ibid.,p. 4062.

    Google Scholar 

  37. J.M. Combes and R. Seiler: Regularity and Asymptotic Properties of the Discrete Spectrum of Electronic Hamiltonians. Int. J. Quantum Chem. 14, 213–229, 1978.

    Article  Google Scholar 

  38. E.H. Lieb and B. Simon: Monotonicity of the Electronic Contribution to the Born—Oppenheimer Energy. J. Phys. B11, L537 — L542, 1978.

    MathSciNet  ADS  Google Scholar 

  39. A subsequent justification of the formal argument of C.A. Coulson; see R. Ahlrichs. Convergence Properties of the Intermolecular Force Series (1/R-Expansion). Theor. Chim. Acta 41, 7–15, 1976.

    Article  Google Scholar 

  40. J.D. Power: Fixed Nuclei Two-Centre Problem in Quantum Mechanics. Phil. Trans. Roy. Soc. London A274, 663–697, 1973.

    Article  ADS  Google Scholar 

  41. R.F. Alvarez-Estrada and A. Galindo: Bound States in Some Coulomb Systems. Il Nuovo Cim. 44B, 47–66, 1978.

    Article  MathSciNet  ADS  Google Scholar 

  42. E.H. Lieb and B. Simon: The Thomas—Fermi Theory of Atoms, Molecules, and Solids. Adv. Math. 23, 22–116, 1977.

    Article  MathSciNet  Google Scholar 

  43. H. Narnhofer and W. Thirring: Asymptotic Exactness of Finite Temperature Thomas—Fermi Theory. Ann. Phys. (N.Y.) 134, 128–140, 1981.

    Article  MathSciNet  ADS  Google Scholar 

  44. B. Baumgartner: The Thomas—Fermi Theory as Result of a Strong-Coupling Limit, Commun. Math. Phys. 47, 215–219, 1976.

    Article  MathSciNet  ADS  Google Scholar 

  45. P. Hertel, H. Narnhofer, and W. Thirring: Thermodynamic Functions for Fermions with Gravostatic and Electrostatic Interactions. Commun. Math. Phys. 28, 159–176, 1972.

    Article  MathSciNet  ADS  Google Scholar 

  46. P. Hertel and W. Thirring: In: Quanten und Felder. H. Dürr, ed. Brunswick, Vieweg, 1971.

    Google Scholar 

  47. J. Messer: Temperature Dependent Thomas—Fermi Theory, Lectures Notes in Physics, vol. 147. New York and Berlin, Springer, 1979.

    Google Scholar 

  48. B. Baumgartner: Thermodynamic Limit of Correlation Functions in a System of Gravitating Fermions. Commun. Math. Phys. 48, 207–213, 1976.

    Article  MathSciNet  ADS  Google Scholar 

  49. E.H. Lieb: The Stability of Matter. Rev. Mod. Phys. 48, 553–569, 1976.

    Article  MathSciNet  ADS  Google Scholar 

  50. W. Thirring: Stability of Matter. In: Current Problems in Elementary Particle and Mathe- matical Physics, P. Urban, ed. Acta Phys. Austriaca Suppl. XV, 337–354, 1976.

    Chapter  Google Scholar 

  51. R. Griffiths: Microcanonical Ensemble in Quantum Statistical Mechanics. J. Math. Phys. 6, 1447–1461, 1965.

    Article  ADS  Google Scholar 

  52. H. Narnhofer and W. Thirring: Convexity Properties for Coulomb Systems. Acta Phys. Austriaca. 41, 281–297, 1975.

    MathSciNet  Google Scholar 

  53. H. Brézis: Some Variational Problems of the Thomas—Fermi Type. In: Variational Inequalities and Complementary Problems, Cottle, Giannessi, and J.-L. Lions, eds. new York, Wiley, 1980, 53–73.

    Google Scholar 

  54. H. Brézis, R. Benguria, and E.H. Lieb: The Thomas—Fermi—von Weizsäcker Theory of Atoms and Molecules. Commun. Math. Phys. 79, 167–180, 1981.

    Article  ADS  MATH  Google Scholar 

  55. E.H. Lieb: Thomas—Fermi and Related Theories of Atoms and Molecules. Rev. Mod. Phys. 53, 603–641, 1981.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. E.H. Lieb: Bound on the Maximum Negative Ionization Energy of Atoms and Molecules. Phys. Rev. A 29, 3018–3028, 1984.

    Article  ADS  Google Scholar 

  57. R. Benguria, E.H. Lieb: The Most Negative Ion in the Thomas—Fermi—von Weizsäcker Theory of Atoms and Molecules. J. Phys. B 18, 1045–1059, 1985.

    Article  MathSciNet  ADS  Google Scholar 

  58. C. Fefferman: The Thermodynamic Limit for a Cristal. Commun. Math. Phys. 98, 289–311, 1985.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. C. Fefferman: The Atomic and Molecular Nature of Matter. Rev. Mat. Iberoam. 1, 1985.

    Google Scholar 

  60. P.-L. Lions: Solutions of Hartree—Fock Equations for Coulomb Systems. Commun. Math. Phys. 109, 33–97, 1987.

    Article  ADS  MATH  Google Scholar 

  61. J.P. Solovej: Universality in the Thomas—Fermi—von Weizsäcker Model of Atoms and Molecules. Commun. Math. Phys. 129, 561–598, 1990.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  62. J. Yngvason: Thomas—Fermi Theory for Matter in a Magnetic Field as a Limit of Quantum Mechanics. Lett. Math. Phys. 22, 107–117, 1991.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  63. E.H. Lieb, J.P. Solovej, and J. Yngvason: Heavy Atoms in the strong Magnetic Field of a neutron star. Phys. Rev. Lett. 69, 749–753, 1992.

    Article  ADS  Google Scholar 

  64. I. Catto, P.-L. Lions: Binding of Atoms and Stability of Molecules in Hartree and Thomas—Fermi Type Theories, parts 1, 2, 3, 4. Commun. Part. Duff. Eq. 17, 18, 1992, 1993.

    Google Scholar 

  65. C. Le Bris: Some Results on the Thomas—Fermi—Dirac—von Weizsäcker Model. Diff. Mt. Eq. 6, 337–353, 1993.

    MATH  Google Scholar 

  66. I. Fushiki, E. Gudmundsson, C.J. Pethick, Ö.E. Rögnvaldsson, and J. Yngvason: Thomas—Fermi Calculations of Atoms and Matter in Magnetic Neutron Stars: Effects of Higher Landau Bands. Astrophys. J. 416, 276–290, 1993.

    Article  ADS  Google Scholar 

  67. E.H. Lieb, J.P. Solovej, and J. Yngvason: Asymptotics of Heavy Atoms in High Magnetic Fields. I: Lowest Landau Band Regions. Commun. Pure and Appl. Math. 47, 513–593, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  68. E. Lieb, J.P. Solovej, and J. Yngvason: Asymptotics of Heavy Atoms in High Magnetic Fields. II: Semiclassical Regions. Commun. Math. Phys. 161, 77–124, 1994.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  69. J.P. Solovej: An Improvement on Stability of Mater in Mean Field Theory. Proceedings of the Conference on PDEs and Mathematical Physics. University of Alabama, International Press, 1994.

    Google Scholar 

  70. C. Fefferman: Stability of Coulomb Systems in a Magnetic Field. Proc. Natl. Acad. Sci. USA 92, 5006–5007, 1995.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  71. E.H. Lieb, M. Loss, and J.P. Solovej: Stability of Matter in Magnetic Fields. Phys. Rev. Lett. 75, 985–989, 1995.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  72. E. Lieb, J.P. Solovej, and J. Yngvason: The Ground States of Large Quantum Dots in Magnetic Fields. Phys. Rev. B 51, 10646–10665, 1995.

    Article  ADS  Google Scholar 

  73. C. Fefferman, J. Fröhlich and G.M. Graf: Stability of Nonrelativistic Quantum Mechanical Matter Coupled to the (ultraviolet cutoff) Radiation Field. Proc. Natl. Acad. Sci. USA 93, 15009–15011, 1996.

    Article  ADS  Google Scholar 

  74. C. Catto, C. Le Bris, and P.-L. Lions: Limite Thermodynamique pour des modèles de type Thomas—Fermi. C. R. Acad. Sci. Paris 322, Série I, 357–364, 1996.

    Google Scholar 

  75. F. Nakano: The Thermodynamic Limit of the Magnetic Thomas—Fermi Energy. J. Math. Sci. Univ. Tokyo 3, 713–722, 1996.

    MathSciNet  MATH  Google Scholar 

  76. Y. Netrusov, T. Weidl: On Lieb—Thirring Inequalities for Higher Order Operators with Critical and Subcritical Powers. Commun. Math. Phys. 182, 355–370, 1996.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  77. T. Weidl: On the Lieb-Thirring Constants. Commun. Math. Phys. 178, 135–146, 1996.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  78. C. Fefferman, J. Fröhlich and G.M. Graf: Stability of Ultraviolet Cutoff Quantum Electrodynamics with Non-relativistic Matter. Commun. Math. Phys. 190, 309–330, 1997.

    Article  ADS  MATH  Google Scholar 

  79. The Stability of Matter: from Atoms to Stars. Selecta of E.H. Lieb. 2nd enl. ed., W. Thirring ed., Berlin-Heidelberg, Springer, 1997.

    Google Scholar 

  80. E.H. Lieb, H. Siedentop, and J.P. Solovej: Stability and Instability of Relativistic Electrons in Magnetic Fields. J. Stat. Phys. 89, 37–59, 1997.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  81. I. Catto, C. Le Bris, and P.-L. Lions: Mathematical Theory of Thermodynamic Limits: Thomas—Fermi Type Models. Oxford Mathematical Monographs. Oxford, Clarendon Press, 1998.

    Google Scholar 

  82. J. Yngvason: Quantum dots. A Survey of Rigorous Results. Operator Theory: Advances and Applications 108, 161–180, 1999.

    MathSciNet  Google Scholar 

  83. D. Hundertmark, A. Laptev, T. Weidl: New Bounds on the Lieb—Thirring Constants. (to be published in Acta Mathematica).

    Google Scholar 

  84. A. Laptev, T. Weidl. Sharp Lieb—Thirring Inequalities in High Dimensions. (to be published in Invent. Mathematicae).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thirring, W. (2002). Atomic Systems. In: Quantum Mathematical Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05008-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05008-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07711-1

  • Online ISBN: 978-3-662-05008-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation