Avirulence Determinants and Elicitors

  • Chapter
Agricultural Applications

Part of the book series: The Mycota ((MYCOTA,volume 11))

Abstract

Being surrounded by putatively hostile microorganisms, but immobile and hence unable to escape, plants constantly need to be prepared for defensive battle. During their coevolution with heterotrophic parasites they have therefore acquired efficient passive, preformed barriers that provide protection against the majority of aggressors. In addition, however, plants have an arsenal of offensive weapons for counterattack at their disposal once the passive bulwark has failed. Usually, this weaponry is launched rapidly and decisively, thus negating any further progression of the invader in order to maintain the plant’s structural and functional integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 67.40
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aderem A, Ulevitch RJ (2000) Toll-like receptors in the induction of the innate immune response. Nature 406:782–787

    PubMed  CAS  Google Scholar 

  • Akiyama K, Kawazu K, Kobayashi A (1995) Partially N-deacetylated chitin oligomers (pentamer to heptamer) are potential elicitors for (+)-pisatin induction in pea epicotyls. Z Naturforsch 50c:391–397

    Google Scholar 

  • Alvarez ME, Pennell RI, Meijer PJ, Ishikawa A, Dixon RA, Lamb C (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92:773–784

    PubMed  CAS  Google Scholar 

  • Ansan-Melayah D, Balesdent MH, Buee M, Rouxel T (1995) Genetic characterization of AvrLm1, the first avirulence gene of Leptosphaeria maculans. Phytopathology 85:1525–1529

    CAS  Google Scholar 

  • Baillieul F, Genetet I, Kopp M, Saindrenan P, Fritig B, Kauffmann S (1995) A new elicitor of the hypersensitive response in tobacco: a fungal glycoprotein elicits cell death, expression of defense genes, production of salicylic acid, and induction of systemic acquired resistance. Plant J 8:551–560

    PubMed  CAS  Google Scholar 

  • Baillieul F, Fritig B, Kauffmann S (1996) Occurrence among Phytophthora species of a glycoprotein eliciting a hypersensitive response in tobacco and its relationships with elicitins. Mol Plant-Microbe Interact 9:214–216

    CAS  Google Scholar 

  • Barber MS, Bertram RE, Ride JP (1989) Chitin oligosaccharides elicit lignification in wounded wheat leaves. Physiol Mol Plant Pathol 34:3–12

    CAS  Google Scholar 

  • Baureithel K, Felix G, Boller T (1994) Specific, high affinity binding of chitin fragments to tomato cells and membranes. Competitive inhibition of binding by derivatives of chitooligosaccharides and a Nod factor of Rhizobium. J Biol Chem 269:17931–17938

    PubMed  CAS  Google Scholar 

  • Blein JP, Milat ML, Ricci P (1991) Responses of cultured tobacco cells to cryptogein, a proteinaceous elicitor from Phytophthora parasitica. Plant Physiol 95:486–491

    PubMed  CAS  Google Scholar 

  • Boissy G, de la Fortelle E, Kahn R, Huet JC, Bricogne G, Pernollet JC, Brunie S (1996) Crystal structure of a fungal elicitor secreted by Phytophthora cryptogea, a member of a novel class of plant necrotic proteins. Structure 4:1429–1439

    PubMed  CAS  Google Scholar 

  • Boller T (1995) Chemoperception of microbial signals in plant cells. Annu Rev Plant Physiol Plant Mol Biol 46:189–214

    CAS  Google Scholar 

  • Bonnet P, Poupet A, Bruneteau M (1985) Toxicité vis-a-vis du tabac des fractions purifiées d’un filtrat de culture de Phytophthora cryptogea Pethyb. & Laff. Agronomie 5:275–282

    Google Scholar 

  • Bonnet P, Lacourt I, Venard P, Ricci P (1994) Diversity in pathogenicity to tobacco and in elicitin production among isolates of Phytophthora parasitica. J Phytopathol 141:25–37

    Google Scholar 

  • Bonnet P, Bourdon E, Ponchet M, Blein JP, Ricci P (1996) Acquired resistance triggered by elicitins in tobacco and other plants. Eur J Plant Pathol 102:181–192

    CAS  Google Scholar 

  • Bourque S, Binet MN, Ponchet M, Pugin A, Lebrun-Garcia A (1999) Characterization of the cryptogein binding sites on plant plasma membranes. J Biol Chem 274: 34699–34705

    PubMed  CAS  Google Scholar 

  • Bowles D (1998) Signal transduction in the wound response of tomato plants. Philos Trans R Soc London Ser B Biol Sci 353:1495–1510

    CAS  Google Scholar 

  • Bowling SA, Clarke JD, Liu Y, Klessig DF, Dong X (1997) The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell 9:1573–1584

    PubMed  CAS  Google Scholar 

  • Bryan GT, Wu KS, Farrall L, Jia YL, Hershey HP, McAdams SA, Faulk KN, Donaldson GK, Tarchini R, Valent B. (2000) A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 12:2033–2045

    PubMed  CAS  Google Scholar 

  • Bushnell WR, Somers DA, Giroux RW, Szabo LJ, Zeyen RJ (1998) Genetic engineering of disease resistance in cereals. Can J Plant Pathol 20:137–149

    Google Scholar 

  • Cao H, Li X, Dong XN (1998) Generation of broadspectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci USA 95:6531–6536

    PubMed  CAS  Google Scholar 

  • Chapman S, Kavanagh T, Baulcombe DC (1992) Potato virus X as a vector for gene expression in plants. Plant J 2:549–557

    PubMed  CAS  Google Scholar 

  • Chen JD, Evans RM (1995) A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377:454–457

    PubMed  CAS  Google Scholar 

  • Cheong JJ, Birberg W, Fuegedi P, Pilotti A, Garegg PJ, Hong N, Ogawa T, Hahn MG (1991) Structureactivity relationships of oligo-β-glucoside elicitors of phytoalexin accumulation in soybean. Plant Cell 3: 127–136

    PubMed  CAS  Google Scholar 

  • Cosio EG, Feger M, Miller CJ, Antelo L, Ebel J (1996) High-affinity binding of fungal β-glucan elicitors to cell membranes of species of the plant family Fabaceae. Planta 200:92–99

    CAS  Google Scholar 

  • Côté F, Hahn MG (1994) Oligosaccharins: structures and signal transduction. Plant Mol Biol 26:1379–1411

    PubMed  Google Scholar 

  • Darvill AG, Albersheim P (1984) Phytoalexins and their elicitors — a defense against microbial infection in plants. Annu Rev Plant Physiol 35:243–275

    CAS  Google Scholar 

  • de Groot MJA, Bundock P, Hooykaas PJJ, Beijersbergen AGM (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16:839–842

    PubMed  Google Scholar 

  • de Wit PJGM (1992) Molecular characterization of gene-for-gene systems in plant-fungus interactions and the application of avirulence genes in control of plant pathogens. Annu Rev Phytopathol 30:391–418

    PubMed  Google Scholar 

  • Devoto A, Piffanelli P, Nilsson I, Wallin E, Panstruga R, Heijne G von, Schulze-Lefert P (1999) Topology, subcellular localization, and sequence diversity of the Mlo family in plants. J Biol Chem 274:34993–35004

    PubMed  CAS  Google Scholar 

  • Dioh W, Tharreau D, Notteghem JL, Orbach M, Lebrun MH (2000) Map** of avirulence genes in the rice blast fungus, Magnaporthe grisea, with RFLP and RAPD markers. Mol Plant-Microbe Interact 13:217–227

    PubMed  CAS  Google Scholar 

  • Dixon RA, Arntzen CJ (1997) Transgenic plant technology is entering the era of metabolic engineering. Trends Biotechnol 15:441–444

    CAS  Google Scholar 

  • Dixon RA, Lamb CJ, Masoud S, Sewalt VJH, Paiva NL (1996) Metabolic engineering: prospects for crop improvement through the genetic manipulation of phenylpropanoid biosynthesis and defense responses: a review. Gene 179:61–71

    PubMed  CAS  Google Scholar 

  • Doares SH, Syrovets T, Weiler EW, Ryan CA (1995) Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc Natl Acad Sci USA 92:4095–4098

    PubMed  CAS  Google Scholar 

  • D’silva I, Heath MC (1997) Purification and characterization of two novel hypersensitive response-inducing specific elicitors produced by the cowpea rust fungus. J Biol Chem 272:3924–3927

    PubMed  Google Scholar 

  • Duclos J, Fauconnier A, Coelho AC, Bollen A, Cravador A, Godfroid E (1998) Identification of an elicitin gene cluster in Phytophthora cinnamomi. DNA Sequence 9:231–237

    PubMed  CAS  Google Scholar 

  • Durner J, Shah J, Klessig DF (1997) Salicylic acid and disease resistance in plants. Trends Plant Sci 2:266–274

    Google Scholar 

  • Durrant WE, Rowland O, Piedras P, Hammond-Kosack KE, Jones JDG (2000) cDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles. Plant Cell 12:963–977

    PubMed  CAS  Google Scholar 

  • Ebel J, Cosio EG (1994) Elicitors of plant defense responses. Int Rev Cytol 148:1–36

    CAS  Google Scholar 

  • Ebel J, Mithöfer A (1998) Early events in the elicitation of plant defence. Planta 206:335–348

    CAS  Google Scholar 

  • Ebel J, Scheel D (1997) Signals in host-parasite interactions. In: Carroll GC, Tudzinsky P (eds) The Mycota, vol V/A. Springer, Berlin Heidelberg New York, pp 85–105

    Google Scholar 

  • Ellis J, Lawrence G, Ayliffe M, Anderson P, Collins N, Finnegan J, Frost D, Luck J, Pryor T (1997) Advances in the molecular genetic analysis of the flax-flax rust interaction. Annu Rev Phytopathol 35:271–291

    PubMed  CAS  Google Scholar 

  • Evans IJ, Greenland AJ (1998) Transgenic approaches to disease protection: applications of antifungal proteins. Pest Sci 54:353–359

    CAS  Google Scholar 

  • Fefeu S, Bouaziz S, Huet JC, Pernollet JC, Guittet E (1997) Three-dimensional solution structure of β cryptogein, a β elicitin secreted by a phytopathogenic fungus, Phytophthora cryptogea. Protein Sci 6:2279–2284

    PubMed  CAS  Google Scholar 

  • Felix G, Regenass M, Boller T (1993) Specific perception of subnanomolar concentrations of chitin fragments by tomato cells: induction of extracellular alkalinization, changes in protein phosphorylation, and establishment of a refractory state. Plant J 4:307–316

    CAS  Google Scholar 

  • Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265–276

    PubMed  CAS  Google Scholar 

  • Fellbrich G, Blume B, Brunner F, Hirt H, Kroj T, Ligterink W, Romanski A, Nürnberger T (2000) Phytophthora parasitica elicitor-induced reactions in cells of Petroselinum crispum. Plant Cell Physiol 41:692–701

    PubMed  CAS  Google Scholar 

  • Flor HH (1955) Host-parasite interactions in flax rust — its genetics and other implications. Phytopathology 45: 680–685

    Google Scholar 

  • Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9:275–296

    Google Scholar 

  • Gayler KR, Popa KM, Maksel DM, Ebert DL, Grant BR (1997) The distribution of elicitin-like gene sequences in relation to elicitin protein secretion within the class Oomycetes. Mol Plant Pathol On-Line: http://www.bspp.org.uk/mppo1/1997/0623gayler

    Google Scholar 

  • Gierlich A, van’t Slot KAE, Li VM, Marie C, Hermann H, Knogge W (1999) Heterologous expression of the avirulence gene product, NIP1, from the barley pathogen Rhynchosporium secalis. Prot Expr Purif 17:64–73

    CAS  Google Scholar 

  • Gilchrist DG (1997) Mycatoxins reveal connections between plants and animals in apoptosis and ceramide signaling. Cell Death Differ 4:689–698

    PubMed  CAS  Google Scholar 

  • Gilchrist DG (1998) Programmed cell death in plant disease: the purpose and promise of cellular suicide. Annu Rev Phytopathol 36:393–414

    PubMed  CAS  Google Scholar 

  • Gomez-Gomez L, Boller T (2000) FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011

    PubMed  CAS  Google Scholar 

  • Gomez-Gomez L, Felix G, Boller T (1999) A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J 18:277–284

    PubMed  CAS  Google Scholar 

  • Gooley PR, Keniry MA, Dimitrov RA, Marsh DE, Keizer DW, Gayler KR, Grant BR (1998) The NMR solution structure and characterization of pH dependent chemical shifts of the β-elicitin, cryptogein. J Biomol NMR 12:523–534

    PubMed  CAS  Google Scholar 

  • Granado J, Felix G, Boller T (1995) Perception of fungal sterols in plants: subnanomolar concentrations of ergosterol elicit extracellular alkalinization in tomato cells. Plant Physiol 107:485–490

    PubMed  CAS  Google Scholar 

  • Grant BR, Ebert D, Gayler KR (1996) Elicitins: proteins in search of a role. Australas Plant Pathol 25:148–157

    Google Scholar 

  • Hahn M, Jüngling S, Knogge W (1993) Cultivar-specific elicitation of barley defense reactions by the phytotoxic peptide NIP1 from Rhynchosporium secalis. Mol Plant-Microbe Interact 6:745–754

    PubMed  CAS  Google Scholar 

  • Ham KS, Wu SC, Darvill AG, Albersheim P (1997) Fungal pathogens secrete an inhibitor protein that distinguishes isoforms of plant pathogenesis-related endo-β-1,3-glucanases. Plant J 11:169–179

    CAS  Google Scholar 

  • Hammond-Kosack KE, Jones JDG (1997) Plant disease resistance genes. Annu Rev Plant Physiol Plant Mol Biol 48:575–607

    PubMed  CAS  Google Scholar 

  • Hammond-Kosack KE, Staskawicz BJ, Jones JDG, Baulcombe DC (1995) Functional expression of a fungal avirulence gene from a modified potato virus X genome. Mol Plant-Microbe Interact 8:181–185

    CAS  Google Scholar 

  • Hammond-Kosack KE, Jones DA, Jones JDG (1996) Ensnaring microbes: the components of plant disease resistance. New Phytol 133:11–24

    CAS  Google Scholar 

  • He DY, Yazaki Y, Nishizawa Y, Takai R, Yamada K, Sakano K, Shibuya N, Minami E (1998) Gene activation by cytoplasmic acidification in suspensioncultured rice cells in response to the potent elicitor, N-acetylchitoheptaose. Mol Plant-Microbe Interact 11:1167–1174

    CAS  Google Scholar 

  • He ZH, Wang ZY, Li JM, Zhu Q, Lamb C, Ronald P, Chory J (2000) Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1. Science 288:2360–2363

    PubMed  CAS  Google Scholar 

  • Heath MC (1981) A generalized concept of host-parasite specificity. Phytopathology 71:1121–1123

    Google Scholar 

  • Heath MC (1991a) Evolution of resistance to fungal parasitism in natural ecosystems. New Phytol 119:331–343

    Google Scholar 

  • Heath MC (1991b) The role of gene-for-gene interactions in the determination of host species specificity. Phytopathology 81:127–130

    Google Scholar 

  • Heath MC (1996) Plant resistance to fungi. Can J Plant Pathol 18:469–475

    CAS  Google Scholar 

  • Higgins VJ, Lu HG, **ng T, Gelli A, Blumwald E (1998) The gene-for-gene concept and beyond: interactions and signals. Can J Plant Pathol 20:150–157

    CAS  Google Scholar 

  • Honée G (1999) Engineered resistance against fungal plant pathogens. Eur J Plant Pathol 105:319–326

    Google Scholar 

  • Honée G, Melchers LS, Vleeshouwers VGAA, van Roekel JSC, de Wit PJGM (1995) Production of the Avr9 elicitor from the fungal pathogen Cladosporium fulvum in transgenic tobacco and tomato plants. Plant Mol Biol 29:909–920

    PubMed  Google Scholar 

  • Huet JC, Lecaer JP, Nespoulous C, Pernollet JC (1995) The relationships between the toxicity and the primary and secondary structures of elicitinlike protein elicitors secreted by the phytopathogenic fungus Pythium vexans. Mol Plant-Microbe Interact 8:302–310

    PubMed  CAS  Google Scholar 

  • Hultmark D (1994) Ancient relationships. Nature 367:116–117

    PubMed  CAS  Google Scholar 

  • Hutcheson SW (1998) Current concepts of active defense in plants. Annu Rev Phytopathol 36:59–90

    PubMed  CAS  Google Scholar 

  • Innes RW (1998) Genetic dissection of R gene signal transduction pathways. Curr Opin Plant Biol 1:299–304

    PubMed  CAS  Google Scholar 

  • Isaacs NW (1995) Cystine knots. Curr Opin Struct Biol 5:391–395

    PubMed  CAS  Google Scholar 

  • Iseli B, Boller T, Neuhaus JM (1993) The N-terminal cysteine-rich domain of tobacco class-I chitinase is essential for chitin binding but not for catalytic or antifungal activity. Plant Physiol 103:221–226

    PubMed  CAS  Google Scholar 

  • Ishihara A, Miyagawa H, Kuwahara Y, Ueno T, Mayama S (1996) Involvement of Ca2+ ion in phytoalexin induction in oats. Plant Sci 115:9–16

    CAS  Google Scholar 

  • Ishihara A, Miyagawa H, Matsukawa T, Ueno T, Mayama S, Iwamura H (1998) Induction of hydroxyanthranilate hydroxycinnamoyl transferase activity by oligo-N-acetylchitooligosaccharides in oats. Phytochemistry 47:969–974

    CAS  Google Scholar 

  • Ito Y, Kaku H, Shibuya N (1997) Identification of a high-affinity binding protein for N-acetylchitooligosaccharide elicitor in the plasma membrane of suspension-cultured rice cells by affinity labeling. Plant J 12:347–356

    PubMed  CAS  Google Scholar 

  • Jarosch B, Kogel KH, Schaffrath U (1999) The ambivalence of the barley Mlo locus: mutations conferring resistance against powdery mildew (Blumeria graminis f. sp. hordei) enhance susceptibility to the rice blast fungus Magnaporthe grisea. Mol Plant-Microbe Interact 12:508–514

    CAS  Google Scholar 

  • Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B (2000) Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J 19:4004–4014

    PubMed  CAS  Google Scholar 

  • Jones DA, Jones JDG (1997) The role of leucine-rich repeat proteins in plant defences. Adv Bot Res 24:89–167

    Google Scholar 

  • Jones DA, Thomas CM, Hammond-Kosack KE, Balint Kurti PJ, Jones JDG (1994) Isolation of the tomato Cf9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266:789–793

    PubMed  CAS  Google Scholar 

  • Jones JDG (1996) Plant disease resistance genes: structure, function and evolution. Curr Opin Biotechnol 7:155–160

    CAS  Google Scholar 

  • Joosten MHAJ, de Wit PJGM (1999) The tomato— Cladosporium fulvum interaction: a versatile experimental system to study plant-pathogen interactions. Annu Rev Phytopathol 37:335–367

    PubMed  CAS  Google Scholar 

  • Joosten MHAJ, Cozijnsen TJ, de Wit PJGM (1994) Host resistance to a fungal tomato pathogen lost by a single base-pair change in an avirulence gene. Nature 367: 384–386

    PubMed  CAS  Google Scholar 

  • Joosten MHAJ, Vogelsang R, Cozijnsen TJ, Verberne MC, de Wit PJGM (1997) The biotrophic fungus Cladosporium fulvum circumvents Cf-4-mediated resistance by producing unstable AVR4 elicitors. Plant Cell 9:367–379

    PubMed  CAS  Google Scholar 

  • Jorgensen HJL (1992) Sources and genetics of resistance to fungal pathogens. In: Shewry PR (ed) Barley: genetics, biochemistry, molecular biology and biotechnology. CAB International, Wallingford, pp 441–457

    Google Scholar 

  • Kaestner B, Tenhaken R, Kauss H (1998) Chitinase in cucumber hypocotyls is induced by germinating fungal spores and by fungal elicitor in synergism with inducers of acquired resistance. Plant J 13:447–454

    Google Scholar 

  • Kahmann R, Basse C (1999) REMI (restriction enzyme mediated integration) and its impact on the isolation of pathogenicity genes in fungi attacking plants. Eur J Plant Pathol 105:221–229

    CAS  Google Scholar 

  • Kaku H, Shibuya N, Xu PL, Aryan AP, Fincher GB (1997) N-Acetylchitooligosaccharides elicit expression of a single (1→3)-β-glucanase gene in suspension-cultured cells from barley (Hordeum vulgare). Physiol Plant 100:111–118

    CAS  Google Scholar 

  • Kamoun S, Klucher KM, Coffey MD, Tyler BM (1993a) A gene encoding a host-specific elicitor protein of Phytophthora parasitica. Mol Plant-Microbe Interact 6:573–581

    PubMed  CAS  Google Scholar 

  • Kamoun S, Young M, Glascock CB, Tyler BM (1993b) Extracellular protein elicitors from Phytophthora: host-specificity and induction of resistance to bacterial and fungal pathogens. Mol Plant-Microbe Interact 6:15–25

    CAS  Google Scholar 

  • Kamoun S, Young M, Foerster H, Coffey MD, Tyler BM (1994) Potential role of elicitins in the interaction between Phytophthora species and tobacco. Appl Environ Microbiol 60:1593–1598

    PubMed  CAS  Google Scholar 

  • Kamoun S, Lindqvist H, Govers F (1997a) A novel class of elicitin-like genes from Phytophthora infestans. Mol Plant-Microbe Interact 10:1028–1030

    PubMed  CAS  Google Scholar 

  • Kamoun S, van West P, de Jong AJ, de Groot KE, Vleeshouwers VGAA, Govers F (1997b) A gene encoding a protein elicitor of Phytophthora infestans is down-regulated during infection of potato. Mol Plant-Microbe Interact 10:13–20

    PubMed  CAS  Google Scholar 

  • Kamoun S, van West P, Vleeshouwers VGAA, de Groot KE, Govers F (1998) Resistance of Nicotiana benthamiana to Phytophthora infestans is mediated by the recognition of the elicitor protein INF1. Plant Cell 10:1413–1425

    PubMed  CAS  Google Scholar 

  • Kang SC, Sweigard JA, Valent B (1995) The PWL host specificity gene family in the blast fungus Magnaporthe grisea. Mol Plant-Microbe Interact 8:939–948

    PubMed  CAS  Google Scholar 

  • Keizer DW, Schuster B, Grant BR, Gayler KR (1998) Interactions between elicitins and radish, Raphanus sativus. Planta 204:480–489

    CAS  Google Scholar 

  • Keller H, Blein JP, Bonnet P, Bourdon E, Panabières F, Ricci P (1994) Responses of tobacco to elicitins, proteins from Phytophthora spp. eliciting acquired resistance. In: Daniels MJ, Downie JA, Osbourn AE (eds) Advances in molecular genetics of plantmicrobe interactions, vol 3. Kluwer, Dordrecht, pp 327–332

    Google Scholar 

  • Keller H, Blein JP, Bonnet P, Ricci P (1996) Physiological and molecular characteristics of elicitin-induced systemic acquired resistance in tobacco. Plant Physiol 110:365–376

    PubMed  CAS  Google Scholar 

  • Keller H, Pamboukdjian N, Ponchet M, Poupet A, Delon R, Verrier JL, Roby D, Ricci P (1999) Pathogeninduced elicitin production in transgenic tobacco generates a hypersensitive response and nonspecific disease resistance. Plant Cell 11:223–235

    PubMed  CAS  Google Scholar 

  • Kikuyama M, Kuchitsu K, Shibuya N (1997) Membrane depolarization induced by N-acetylchitooligosaccharide elicitor in suspension-cultured rice cells. Plant Cell Physiol 38:902–909

    CAS  Google Scholar 

  • Knogge W (1997) Elicitors and suppressors of the resistance response. In: Heitefu§ R, Hoppe H-H, Hartleb H (eds) Resistance of crop plants against fungi. Gustav Fischer, Jena, pp 159–182

    Google Scholar 

  • Koga J, Yamauchi T, Shimura M, Ogawa N, Oshima K, Umemura K, Kikuchi M, Ogasawara N (1998) Cerebrosides A and C, sphingolipid elicitors of hypersensitive cell death and phytoalexin accumulation in rice plants. J Biol Chem 273:31985–31991

    PubMed  CAS  Google Scholar 

  • Kombrink E, Somssich IE (1995) Defense responses of plants to pathogens. In: Andrews JH, Tomrnerup IC (eds) Adv Bot Res, vol21. Academic Press, London, pp 1–34

    Google Scholar 

  • Kombrink E, Sornssich IE (1997) Pathogenesis-related proteins and plant defense. In: Caroll GC, Tudzynski P (eds) The Mycota, vol V. Springer, Berlin Heidelberg New York, pp 107–128

    Google Scholar 

  • Koornan-Gersrnann M, Honée G, Bonnema G, de Wit PJGM (1996) A high-affinity binding site for the AVR9 peptide elicitor of Cladosporium fulvum is present on plasma membranes of tomato and other solanaceous plants. Plant Cell 8:929–938

    Google Scholar 

  • Kooman-Gersmann M, Vogelsang R, Hoogendijk ECM, de Wit PJGM (1997) Assignment of amino acid residues of the AVR9 peptide of Cladosporium fulvum that determine elicitor activity. Mol Plant-Microbe Interact 10:821–829

    PubMed  CAS  Google Scholar 

  • Kooman-Gersmann M, Vogelsang R, Vossen P, van den Hooven HW, Mahé E, Honée G, de Wit PJGM (1998) Correlation between binding affinity and necrosisinducing activity of mutant AVR9 peptide elicitors. Plant Physiol 117:609–618

    PubMed  CAS  Google Scholar 

  • Kuchitsu K, Kikuyama M, Shibuya N (1993) N-Acetylchitooligosaccharides, biotic elicitor for phytoalexin production induce transient membrane depolarization in suspension-cultured rice cells. Protoplasma 174:79–81

    CAS  Google Scholar 

  • Lange J, Mohr U, Wiemken A, Boller T, Vögeli-Lange R (1996) Proteolytic processing of class IV chitinase in the compatible interaction of bean roots with Fusarium solani. Plant Physiol 111:1135–1144

    PubMed  CAS  Google Scholar 

  • Laugé R, Joosten MHAJ, van den Ackerveken GFJM, van den Broek HWJ, de Wit PJGM (1997) The in plantaproduced extracellular proteins ECP1 and ECP2 of Cladosporium fulvum are virulence factors. Mol Plant-Microbe Interact 10:725–734

    Google Scholar 

  • Laugé R, Joosten MHAJ, Haanstra JPW, Goodwin PH, Lindhout P, de Wit PJGM (1998) Successful search for a resistance gene in tomato targeted against a virulence factor of a fungal pathogen. Proc Natl Acad Sci USA 95:9014–9018

    PubMed  Google Scholar 

  • Laugé R, Goodwin PH, de Wit PJGM, Joosten MHAJ (2000) Specific HR-associated recognition of secreted proteins from Cladosporium fulvum occurs in both host and non-host plants. Plant J 23:735–745

    PubMed  Google Scholar 

  • Le Berre JY, Panabières F, Ponchet M, Denoroy L, Bonnet P, Marais A, Ricci P (1994) Occurrence of multiple forms of elicitins in Phytophthora cryptogea. Plant Physiol Biochem 32:251–258

    Google Scholar 

  • Low PS, Merida JR (1996) The oxidative burst in plant defence: function and signal transduction. Physiol Plant 96:533–542

    CAS  Google Scholar 

  • Mahé E, Vossen P, van den Hooven HW, Le-Nguyen D, Vervoort J, de Wit PJGM (1998) Solid-phase synthesis, conformational analysis, and biological activity of AVR9 elicitor peptides of the fungal tomato pathogen Cladosporium fulvum. J Peptide Res 52: 482–494

    Google Scholar 

  • Maleck K, Dietrich RA (1999) Defense on multiple fronts: how do plants cope with diverse enemies? Trends Plant Sci 4:215–219

    PubMed  Google Scholar 

  • Mandel MA, Crouch VW, Gunawardena UP, Harper TM, Orbach MJ (1997) Physical map** of the Magnaporthe grisea AVR1-MARA locus reveals the virulent allele contains two deletions. Mol Plant-Microbe Interact 10:1102–1105

    CAS  Google Scholar 

  • Mao YX, Tyler BM (1996) Cloning and sequence analysis of elicitin genes of Phytophthora sojae. Fung Genet Biol 20:169–172

    CAS  Google Scholar 

  • Marmeisse R, van den Ackerveken GFJM, Goosen T, de Wit PJGM, van den Broek HWJ (1993) Disruption of the avirulence gene Avr9 in 2 races of the tomato pathogen Cladosporium fulvum causes virulence on tomato genotypes with the complementary resistance gene Cf9. Mol Plant-Microbe Interact 6:412–417

    CAS  Google Scholar 

  • Martin GB (1999) Functional analysis of plant disease resistance genes and their downstream effectors. Curr Opin Plant Biol 2:273–279

    PubMed  CAS  Google Scholar 

  • Mateos FV, Rickauer M, Esquerré-Tugayé MT (1997) Cloning and characterization of a cDNA encoding an elicitor of Phytophthora parasitica var. nicotianae that shows cellulose-binding and lectin-like activities. Mol Plant-Microbe Interact 10:1045–1053

    PubMed  CAS  Google Scholar 

  • McDowell JM, Dangl JL (2000) Signal transduction in the plant immune response. Trends Biochem Sci 25: 79–82

    PubMed  CAS  Google Scholar 

  • Melchers LS, Stuiver MH (2000) Novel genes for diseaseresistance breeding. Curr Opin Plant Biol 3:147–152

    PubMed  CAS  Google Scholar 

  • Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J 20:317–332

    PubMed  CAS  Google Scholar 

  • Mikes V, Milat ML, Ponchet M, Ricci P, Blein JP (1997) The fungal elicitor cryptogein is a sterol carrier protein. FEBS Lett 416:190–192

    PubMed  CAS  Google Scholar 

  • Mikes V, Milat ML, Ponchet M, Panabierès F, Ricci P, Blein JP (1998) Elicitins, proteinaceous elicitors of plant defense, are a new class of sterol carrier proteins. Biochem Biophys Res Commun 245:133–139

    PubMed  CAS  Google Scholar 

  • Milat ML, Ricci P, Bonnet P, Blein JP (1991) Capsidiol and ethylene production by tobacco cells in response to cryptogein, an elicitor from Phytophthora cryptogea. Phytochemistry 30:2171–2173

    CAS  Google Scholar 

  • Mithöfer A, Fliegmann J, Ebel J (1999) Isolation of a French bean (Phaseolus vulgaris L.) homolog to the β-glucan elicitor-binding protein of soybean (Glycine max L.). Biochim Biophys Acta 1418:127–132

    PubMed  Google Scholar 

  • Miyagawa H, Ishihara A, Kuwahara Y, Ueno T, Mayama S (1996) A stress compound in oats induced by victorin, a host-specific toxin from Helminthosporium victoriae. Phytochemistry 41:1473–1475

    CAS  Google Scholar 

  • Morris K, Mackerness SAH, Page T, John CF, Murphy AM, Carr JP, Buchanan-Wollaston V (2000) Salicylic acid has a role in regulating gene expression during leaf senescence. Plant J 23:677–685

    PubMed  CAS  Google Scholar 

  • Mouton-Perronnet F, Bruneteau M, Denoroy L, Bouliteau P, Ricci P, Bonnet P, Michel G (1995) Elicitin produced by an isolate of Phytophthora parasitica pathogenic to tobacco. Phytochemistry 38:41–44

    PubMed  CAS  Google Scholar 

  • Münch-Garthoff S, Neuhaus JM, Boller T, Kemmerling B, Kogel KH (1997) Expression of β-1,3-glucanase and chitinase in healthy, stem-rust-affected and elicitortreated near-isogenic wheat lines showing Sr5- or Sr24-specified race-specific rust resistance. Planta 201:235–244

    PubMed  Google Scholar 

  • Nakayashiki H, Kiyotomi K, Tosa Y, Mayama S (1999) Transposition of the retrotransposon MAGGY in heterologous species of filamentous fungi. Genetics 153:693–703

    PubMed  CAS  Google Scholar 

  • Nennstiel D, Scheel D, Nürnberger T (1998) Characterization and partial purification of an oligopeptide elicitor receptor from parsley (Petroselinum crispum). FEBS Lett 431:405–410

    PubMed  CAS  Google Scholar 

  • Nishizawa Y, Kawakami A, Hibi T, He DY, Shibuya N, Minami E (1999) Regulation of the chitinase gene expression in suspension-cultured rice cells by N-acetylchitooligosaccharides: differences in the signal transduction pathways leading to the activation of elicitor-responsive genes. Plant Mol Biol 39:907–914

    PubMed  CAS  Google Scholar 

  • Nürnberger T (1999) Signal perception in plant pathogen defense. Cell Mol Life Sci 55:167–182

    Google Scholar 

  • Nürnberger T, Nennstiel D (1998) Fungal peptide elicitors: signals mediating pathogen recognition in plants. Z Naturforsch 53c:141–150

    Google Scholar 

  • Nürnberger T, Nennstiel D, Jabs T, Sacks WR, Hahlbrock K, Scheel D (1994) High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell 78:449–460

    PubMed  Google Scholar 

  • Panabières F, Marais A, Le Berre JY, Penot I, Fournier D, Ricci P (1995) Characterization of a gene cluster of Phytophthora cryptogea which codes for elicitins, proteins inducing a hypersensitive-like response in tobacco. Mol Plant-Microbe Interact 8:996–1003

    PubMed  Google Scholar 

  • Panabières F, Ponchet M, Allasia V, Cardin L, Ricci P (1997) Characterization of border species among Pythiaceae: several Pythium isolates produce elicitins, typical proteins from Phytophthora spp. Mycol Res 101: 1459–1468

    Google Scholar 

  • Panabières F, Birch PRJ, Unkles SE, Ponchet M, Lacourt I, Venard P, Keller H, Allasia V, Ricci P, Duncan JM (1998) Heterologous expression of a basic elicitin from Phytophthora cryptogea in Phytophthora infestans increases its ability to cause leaf necrosis in tobacco. Microbiology 144:3343–3349

    PubMed  Google Scholar 

  • Parker JE, Hahlbrock K, Scheel D (1988) Different cellwall components from Phytophthora megasperma f. sp. glycinea elicit phytoalexin production in soybean and parsley. Planta 176:75–82

    CAS  Google Scholar 

  • Parker JE, Schulte W, Hahlbrock K, Scheel D (1991) An extracellular glycoprotein from Phytophthora megasperma f. sp. glycinea elicits phytoalexin synthesis in cultured parsley cells and protoplasts. Mol PlantMicrobe Interact 4:19–27

    CAS  Google Scholar 

  • Pernollet JC, Sallantin M, Sallé-Tourne M, Huet JC (1993) Elicitin isoforms from seven Phytophthora species: comparison of their physico-chemical properties and toxicity to tobacco and other plant species. Physiol Mol Plant Pathol 42:53–67

    CAS  Google Scholar 

  • Piffanelli P, Devoto A, Schulze-Lefert P (1999) Defence signalling pathways in cereals. Curr Opin Plant Biol 2:295–300

    PubMed  CAS  Google Scholar 

  • Ponchet M, Panabières F, Milat ML, Mikes V, Montillet JL, Suty L, Triantaphylides C, Tirilly Y, Blein JP (1999) Are elicitins cryptograms in plant-oomycete communications? Cell Mol Life Sci 56:1020–1047

    PubMed  CAS  Google Scholar 

  • Pontier D, Godiard L, Marco Y, Roby D (1994) Hsr203J, a tobacco gene whose activation is rapid, highly localized and specific for incompatible plant-pathogen interactions. Plant J 5:507–521

    PubMed  CAS  Google Scholar 

  • Ricci P, Bonnet P, Huet JC, Sallantin M, Beauvais-Cante F, Bruneteau M, Billard V, Michel G, Pernollet JC (1989) Structure and activity of proteins from pathogenic fungi Phytophthora eliciting necrosis and acquired resistance in tobacco. Eur J Biochem 183:555–563

    PubMed  CAS  Google Scholar 

  • Ricci P, Trentin F, Bonnet P, Venard P, Mouton-Perronnet F, Bruneteau M (1992) Differential production of parasiticein, an elicitor of necrosis and resistance in tobacco, by isolates of Phytophthora parasitica. Plant Physiol 41:298–307

    CAS  Google Scholar 

  • Ricci P, Panabierès F, Bonnet P, Maia N, Ponchet M, Devergne JC, Marais A, Cardin L, Milat ML, Blein JP (1993) Proteinaceous elicitors of plant defense responses. In: Fritig B, Legrands M (eds) Mechanisms of plant defense response. Kluwer, Dordrecht, pp 121–135

    Google Scholar 

  • Richter TE, Ronald PC (2000) The evolution of disease resistance genes. Plant Mol Biol 42:195–204

    PubMed  CAS  Google Scholar 

  • Roby D, Gadelle A, Toppan P (1987) Chitin oligosaccharides as elicitors of chitinase activity in melon plants. Biochem Biophys Res Commun 143:885–892

    PubMed  CAS  Google Scholar 

  • Rohe M, Gierlich A, Hermann H, Hahn M, Schmidt B, Rosahl S, Knogge W (1995) The race-specific elicitor, NIP1, from the barley pathogen, Rhynchosporium secalis, determines avirulence on host plants of the Rrs1 resistance genotype. EMBO J 14:4168–4177

    PubMed  CAS  Google Scholar 

  • Rushton PJ, Somssich IE (1999) Transcriptional regulation of plant genes responsive to pathogens and elicitors. In: Stacey G, Keen NT (eds) Plant-microbe interactions, vol 4. APS Press, St. Paul, pp 251–275

    Google Scholar 

  • Ryals J, Lawton KA, Delaney TP, Friedrich L, Kessmann H, Neuenschwander U, Uknes S, Vernooij B, Weymann K (1995) Signal transduction in systemic acquired resistance. Proc Natl Acad Sci USA 92:4202–4205

    PubMed  CAS  Google Scholar 

  • Sacks W, Nürnberger T, Hahlbrock K, Scheel D (1995) Molecular characterization of nucleotide sequences encoding the extracellular glycoprotein elicitor from Phytophthora megasperma. Mol Gen Genet 246:45–55

    PubMed  CAS  Google Scholar 

  • Sahai AS, Manocha MS (1993) Chitinases of fungi and plants: their involvement in morphogenesis and host parasite interaction. FEMS Microbiol Rev 11:317–338

    CAS  Google Scholar 

  • Sakaki T, Zaehringer U, Warnecke DC, Fahl A, Knogge W, Heinz E (2001) Sterol glycosides and cerebrosides accumulate in Pichia pastoris, Rhynchosporium secalis, and other fungi under normal conditions or under heat shock and ethanol stress. Yeast 18:679–695

    PubMed  CAS  Google Scholar 

  • Salmeron JM, Vernooij B (1998) Transgenic approaches to microbial disease resistance in crop plants. Curr Opin Plant Biol 1:347–352

    PubMed  CAS  Google Scholar 

  • Scheel D (1998) Resistance response physiology and signal transduction. Curr Opin Plant Biol 1:305–310

    PubMed  CAS  Google Scholar 

  • Séjalon-Delmas N, Mateos FV, Bottin A, Rickauer M, Dargent R, Esquerré-Tugayé MT (1997) Purification, elicitor activity, and cell wall localization of a glycoprotein from Phytophthora parasitica var. nicotianae, a fungal pathogen of tobacco. Phytopathology 87: 899–909

    PubMed  Google Scholar 

  • Shah DM (1997) Genetic engineering for fungal and bacterial diseases. Curr Opin Biotechnol 8:208–214

    PubMed  CAS  Google Scholar 

  • Shibuya N, Kaku H, Kuchitsu K, Maliarik MJ (1993) Identification of a novel high-affinity binding site for N-acetylchitooligosaccharide elicitor in the membrane fraction from suspension-cultured rice cells. FEBS Lett 329:75–78

    PubMed  CAS  Google Scholar 

  • Shibuya N, Ebisu N, Kamada Y, Kaku H, Cohn J, Ito Y (1996) Localization and binding characteristics of a high-affinity binding site for N-acetylchitooligosaccharide elicitor in the plasma membrane from suspension-cultured rice cells suggest a role as a receptor for the elicitor signal at the cell surface. Plant Cell Physiol 37:894–898

    CAS  Google Scholar 

  • Somssich IE, Hahlbrock K (1998) Pathogen defence in plants: a paradigm of biological complexity. Trends Plant Sci 3:86–90

    Google Scholar 

  • Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806

    PubMed  CAS  Google Scholar 

  • Stintzi A, Heitz T, Prasad V, Wiedemann-Merdinoglu S, Kauffmann S, Geoffroy P, Legrand M, Fritig B (1993) Plant pathogenesis-related proteins and their role in defense against pathogens. Biochimie 75:687–706

    PubMed  CAS  Google Scholar 

  • Strittmatter G, Gheysen G, Gianinazzi-Pearson V, Hahn K, Niebel A, Rohde W, Tacke E (1996) Infections with various types of organisms stimulate transcription from a short promoter fragment of the potato gst1 gene. Mol Plant-Microbe Interact 9:68–73

    PubMed  CAS  Google Scholar 

  • Sweigard JA, Carroll AM, Kang S, Farrall L, Chumley FG, Valent B (1995) Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell 7:1221–1233

    PubMed  CAS  Google Scholar 

  • Trotochaud AE, Hao T, Wu G, Yang Z, Clark SE (1999) The CLAVATA1 receptor-like kinase requires CLAVATA3 for its assembly into a signaling complex that includes KAPP and a rho-related protein. Plant Cell 11:393–405

    PubMed  CAS  Google Scholar 

  • Umemoto N, Kakitani M, Iwamatsu A, Yoshikawa M, Yamaoka N, Ishida I (1997) The structure and function of a soybean β-glucan-elicitor-binding protein. Proc Natl Acad Sci USA 94:1029–1034

    PubMed  CAS  Google Scholar 

  • Umemura K, Ogawa N, Yamauchi T, Iwata M, Shimura M, Koga J (2000) Cerebroside elicitors found in diverse phytopathogens activate defense responses in rice plants. Plant Cell Physiol 41:676–683

    PubMed  CAS  Google Scholar 

  • Valent B (1997) The rice blast fungus Magnaporthe grisea. In: Carroll GC, Tudzynski P (eds) The Mycota, vol V/B. Springer, Berlin Heidelberg New York, pp 37–54

    Google Scholar 

  • Valent B, Chumley FG (1991) Molecular genetic analysis of the rice blast fungus, Magnaporthe grisea. Annu Rev Phytopathol 29:443–467

    PubMed  CAS  Google Scholar 

  • Valent B, Chumley FG (1994) Avirulence genes and mechanisms of genetic instability in the rice blast fungus. In: Zeigler R, Teng PS, Leong S (eds) Rice blast diseases. CAB International, Wallingford, pp 111–134

    Google Scholar 

  • van den Ackerveken GFJM, van Kan JAL, de Wit PJGM (1992) Molecular analysis of the avirulence gene avr9 of the fungal tomato pathogen Cladosporium fulvum fully supports the gene-for-gene hypothesis. Plant J 2:359–366

    PubMed  Google Scholar 

  • van den Ackerveken GFJM, van Kan JAL, Joosten MHAJ, Muisers JM, Verbakel HM, de Wit PJGM (1993a) Characterization of two putative pathogenicity genes of the fungal tomato pathogen Cladosporium fulvum. Mol Plant-Microbe Interact 6:210–215

    PubMed  Google Scholar 

  • van den Ackerveken GFJM, Vossen P, de Wit PJGM (1993b) The AVR9 race-specific elicitor of Cladosporium fulvum is processed by endogenous and plant proteases. Plant Physiol 103:91–96

    PubMed  Google Scholar 

  • van den Hooven HW, Appelman AWJ, Zey T, de Wit PJGM, Vervoort J (1999) Folding and conformational analysis of AVR9 peptide elicitors of the fungal tomato pathogen Cladosporium fulvum. Eur J Biochem 264:9–18

    PubMed  Google Scholar 

  • van Kan JAL, van den Ackerveken GFJM, de Wit PJGM (1991) Cloning and characterization of cDNA of avirulence gene avr9 of the fungal pathogen Cladosporium fulvum, causal agent of tomato leaf mold. Mol Plant-Microbe Interact 4:52–59

    PubMed  Google Scholar 

  • van West P, Kamoun S, van’t Klooster JW, Govers F (1999) Internuclear gene silencing in Phytophthora infestans. Mol Cell 3:339–348

    PubMed  Google Scholar 

  • Vauthrin S, Mikes V, Milat ML, Ponchet M, Maume B, Osman H, Blein JP (1999) Elicitins trap and transfer sterols from micelles, liposomes and plant plasma membranes. Biochim Biophys Acta 1419:335–342

    PubMed  CAS  Google Scholar 

  • Vervoort J, van den Hooven HW, Berg A, Vossen P, Vogelsang R, Joosten MHAJ, de Wit PJGM (1997) The racespecific elicitor AVR9 of the tomato pathogen Cladosporium fulvum: a cystine knot protein. FEBS Lett 404:153–158

    PubMed  CAS  Google Scholar 

  • Viard MP, Martin F, Pugin A, Ricci P, Blein JP (1994) Protein phosphorylation is induced in tobacco cells by the elicitor cryptogein. Plant Physiol 104

    Google Scholar 

  • Weiss A, Schlessinger J (1998) Switching signals on or off by receptor dimerization. Cell 94:277–280

    PubMed  CAS  Google Scholar 

  • Wendehenne D, Binet MN, Blein JP, Ricci P, Pugin A (1995) Evidence for specific, high-affinity binding sites for a proteinaceous elicitor in tobacco plasma membrane. FEBS Lett 374:203–207

    PubMed  CAS  Google Scholar 

  • Wevelsiep L, Kogel KH, Knogge W (1991) Purification and characterization of peptides from Rhynchosporium secalis inducing necrosis in barley. Physiol Mol Plant Pathol 39:471–482

    CAS  Google Scholar 

  • Wevelsiep L, Rüp** E, Knogge W (1993) Stimulation of barley plasmalemma H+-ATPase by phytotoxic peptides from the fungal pathogen Rhynchosporium secalis. Plant Physiol 101:297–301

    PubMed  CAS  Google Scholar 

  • Whisson SC, Drenth A, Maclean DJ, Irwin JAG (1995) Phytophthora sojae avirulence genes, RAPD, and RFLP markers used to construct a detailed genetic linkage map. Mol Plant-Microbe Interact 8:988–995

    PubMed  CAS  Google Scholar 

  • Wu GS, Shortt BJ, Lawrence EB, Levine EB, Fitzsimmons KC, Shah DM (1995) Disease resistance conferred by expression of a gene encoding H2O2-generating glucose oxidase in transgenic potato plants. Plant Cell 7:1357–1368

    PubMed  CAS  Google Scholar 

  • Wu GS, Shortt BJ, Lawrence EB, Leon J, Fitzsimmons KC, Levine EB, Raskin I, Shah DM (1997) Activation of host defense mechanisms by elevated production of H2O2 in transgenic plants. Plant Physiol 115:427–435

    PubMed  CAS  Google Scholar 

  • Wubben JP, Lawrence CB, de Wit PJGM (1996) Differential induction of chitinase and 1,3-β-glucanase gene expression in tomato by Cladosporium fulvum and its race-specific elicitors. Physiol Mol Plant Pathol 48: 105–116

    CAS  Google Scholar 

  • Yamaguchi T, Yamada A, Hong N, Ogawa T, Ishii T, Shibuya N (2000) Differences in the recognition of glucan elicitor signals between rice and soybean: β-glucan fragments from the rice blast disease fungus Pyricularia oryzae that elicit phytoalexin biosynthesis in suspension-cultured rice cells. Plant Cell 12:817–826

    PubMed  CAS  Google Scholar 

  • Yang Y, Shah J, Klessig DF (1997) Signal perception and transduction in plant defense responses. Genes Dev 11:1621–1639

    PubMed  CAS  Google Scholar 

  • Yu LM (1995) Elicitins from Phytophthora and basic resistance in tobacco. Proc Natl Acad Sci USA 92:4088–4094

    PubMed  CAS  Google Scholar 

  • Zambino PJ, Kubelik AR, Szabo LJ (2000) Gene action and linkage of avirulence genes to DNA markers in the rust fungus Puccinia graminis. Phytopathology 90: 819–826

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Knogge, W. (2002). Avirulence Determinants and Elicitors. In: Kempken, F. (eds) Agricultural Applications. The Mycota, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03059-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03059-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07650-3

  • Online ISBN: 978-3-662-03059-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation