Artificial Intelligence

  • Chapter
  • First Online:
Artificial Intelligence for Business Analytics

Abstract

McCarthy defines artificial intelligence as “[…] the science and technology of creating intelligent machines, especially intelligent computer programs”. The discipline is related to the task of using computers to understand human intelligence. Thus, many subfields and methods of AI also rely on biological patterns and processes but AI is not limited to these biologically observable methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 53.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 69.54
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See the execution of Alan Turing in this regard. The mathematician and computer scientist is considered one of the most influential theorists of early computer development and computer science.

  2. 2.

    However, it must be said that this classification is not uncontroversial.

  3. 3.

    Mostly mathematical optimization systems are meant here.

  4. 4.

    Further information can be found in [2].

  5. 5.

    The curse of dimensionality refers to several phenomena that occur when analyzing and organizing data in high-dimensional spaces (often with hundreds or thousands of dimensions) that do not occur in low-dimensional environments, such as the three-dimensional physical space of everyday experience. The common theme of these problems is that as the dimensionality increases, the volume of the space increases so rapidly that the available data becomes sparse. In machine learning problems where learning is done from a limited number of data samples in a high dimensional feature space, where each feature has a set of possible values, an enormous amount of training data is usually required to ensure that there are multiple samples with each combination of values. More information on the curse and possible solutions can be found, for example, in [4].

  6. 6.

    For more detailed information on this learning model, see [5] or [6].

  7. 7.

    For further information see [8] or [9].

  8. 8.

    A survey of the various developments around the Apriori algorithm can be found in [13] or [14].

  9. 9.

    See [14] or [16].

  10. 10.

    For a comprehensive and scientifically sound presentation of second-order algorithms, see the University of Standford Lecture Notes by Prof. Ye. Available here: https://web.stanford.edu/class/msande311/lecture13.pdf.

  11. 11.

    See: [24].

  12. 12.

    See: [25].

  13. 13.

    See: [26].

References

  1. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach Prentice Hall Series in Artificial Intelligence, vol. xxviii, p. 932. Prentice Hall, Englewood Cliffs (1995)

    MATH  Google Scholar 

  2. Watson, H.J., Rainer Jr., R.K., Koh, C.E.: Executive information systems: a framework for development and a survey of current practices. MIS Q. 15, 13–30 (1991)

    Article  Google Scholar 

  3. Goodfellow, I., et al.: Deep Learning, vol. 1. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  4. Amirian, P., Lang, T., van Loggerenberg, F.: Big Data in Healthcare: Extracting Knowledge from Point-of-Care Machines. Springer, Cham (2017)

    Book  Google Scholar 

  5. Zachman, J.A.: A framework for information systems architecture. IBM Syst. J. 26(3), 276–292 (1987)

    Article  Google Scholar 

  6. Sowa, J.F., Zachman, J.A.: Extending and formalizing the framework for information systems architecture. IBM Syst. J. 31(3), 590–616 (1992)

    Article  Google Scholar 

  7. Witten, I.H., et al.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Cambridge (2016)

    MATH  Google Scholar 

  8. Gorry, G.A., Scott Morton, M.S.: A framework for management information systems. Sloan Manag. Rev. 13, 55–70 (1971)

    Google Scholar 

  9. Sprague Jr., R.H.: A framework for the development of decision support systems. MIS Q. 4, 1–26 (1980)

    Article  Google Scholar 

  10. Robert, C., Moy, C., Wang, C.-X.: Reinforcement learning approaches and evaluation criteria for opportunistic spectrum access. In: 2014 IEEE International Conference on Communications (ICC), IEEE (2014)

    Google Scholar 

  11. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2018)

    MATH  Google Scholar 

  12. Michalski, R.S., Carbonell, J.G., Mitchell, T.M.: Machine Learning: An Artificial Intelligence Approach. Springer Science & Business Media, Berlin (2013)

    MATH  Google Scholar 

  13. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of the 20th International Conference on Very Large Data Bases, VLDB (1994)

    Google Scholar 

  14. Gluchowski, P., Chamoni, P.: Analytische Informationssysteme: Business Intelligence-Technologien und -Anwendungen, 5th edn. Springer Imprint/Springer Gabler, Berlin/Heidelberg (2016)

    Book  Google Scholar 

  15. Bollinger, T.: Assoziationsregeln – Analyse eines Data Mining Verfahrens. Informatik-Spektrum. 19(5), 257–261 (1996)

    Article  Google Scholar 

  16. Decker, R.: Empirischer Vergleich alternativer Ansätze zur Verbundanalyse im Marketing. Proceedingsband zur KSFE. 5, 99–110 (2001)

    Google Scholar 

  17. Dhanachandra, N., Manglem, K., Chanu, Y.J.: Image segmentation using K-means clustering algorithm and subtractive clustering algorithm. Procedia Comput. Sci. 54, 764–771 (2015)

    Article  Google Scholar 

  18. Kim, N., et al.: Load profile extraction by mean-shift clustering with sample Pearson correlation coefficient distance. Energies. 11, 2397 (2018)

    Article  Google Scholar 

  19. Larcheveque, J.-M.H.D., et al.: Semantic clustering. Google Patents (2016)

    Google Scholar 

  20. Chatterjee, S., Hadi, A.S.: Regression Analysis by Example. Wiley, New York (2015)

    MATH  Google Scholar 

  21. Tukey, J.W.: Comparing individual means in the analysis of variance. Biometrics. 5(2), 99–114 (1949)

    Article  MathSciNet  Google Scholar 

  22. Yu, C.H.: Exploratory data analysis. Methods. 2, 131–160 (1977)

    Google Scholar 

  23. Pazzani, M.J., Billsus, D.: Content-based recommendation systems. In: The Adaptive Web, pp. 325–341. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  24. Linden, G., Smith, B., York, J.: Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Comput. 7, 76–80 (2003)

    Article  Google Scholar 

  25. Gunawardana, A., Meek, C.: A unified approach to building hybrid recommender systems. RecSys. 9, 117–124 (2009)

    Google Scholar 

  26. Liu, N.N., Zhao, M., Yang, Q.: Probabilistic latent preference analysis for collaborative filtering. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management, ACM (2009)

    Google Scholar 

  27. Gong, S.: A collaborative filtering recommendation algorithm based on user clustering and item clustering. JSW. 5(7), 745–752 (2010)

    Article  Google Scholar 

  28. Burke, R.: Hybrid recommender systems: survey and experiments. User Model. User-Adap. Inter. 12(4), 331–370 (2002)

    Article  MATH  Google Scholar 

  29. Zhao, X., Zhang, W., Wang, J.: Interactive collaborative filtering. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, ACM (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Fachmedien Wiesbaden GmbH, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weber, F. (2023). Artificial Intelligence. In: Artificial Intelligence for Business Analytics. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-37599-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-37599-7_2

  • Published:

  • Publisher Name: Springer Vieweg, Wiesbaden

  • Print ISBN: 978-3-658-37598-0

  • Online ISBN: 978-3-658-37599-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation