Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 39))

Abstract

The elegance and persuasiveness of Darwinian thought strikes a sympathetic chord with ecologists and natural historians, who see in the beauty of nature remarkable examples of organisms “adapted” to their environments. The subtlety of the process of adaptation is however too often ignored, and the notion of optimization mistakenly equated with adaptation. Lewontin (1977) reminds us that “adaptation, for Darwin, was a process of becoming rather than a state of final optimality.” As pointed out elsewhere (Levin 1978), “environments change, not only due to extrinsic causes, but also as a result of adaptation already effected. The evolutionary response is to the present, and carries with it no guarantee that any sort of optimum will be attained. Evolution is something which simply happens, rather than a calculated, far-seeing program for optimization.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Amir, S., On the optimal timing of reproduction. Amer.Natur. 114: 461–466, 1979.

    Article  Google Scholar 

  • Anderson, W.W., Genetic equilibrium and population growth under density-regulated selection. Amer.Natur. 105: 489–498, 1971.

    Article  Google Scholar 

  • Charlesworth, B., Selection in density-regulated populations. Ecology 52: 469–474, 1971.

    Article  Google Scholar 

  • Cohen, D., Maximizing final yield when growth is limited by time or by limiting resources. J.Theor.Biol. 33: 299–307, 1971.

    Article  Google Scholar 

  • Cohen, D., The optimal timing of reproduction. Amer.Natur. 110: 801–807, 1976.

    Article  Google Scholar 

  • Comins, H.N.,W.D. Hamilton, and R.M. May, Evolutionary stable dispersal strategies. Theor. Pop.Biol., to appear.

    Google Scholar 

  • Dawkins, R., The Selfish Gene. New York, Oxford University Press. 1976. 224+xi pp.

    Google Scholar 

  • Elderkin, R.H., Analysis of an age-dependent, nonlinear model of seed dispersal, ms., 1979.

    Google Scholar 

  • Endler, J.A., A predator’s view of animal color patterns. Evol.Biol. 11: 219–364, 1978.

    Google Scholar 

  • Ewens, W.J., A generalized fundamental theorem of natural selection. Genetics, 63: 531–537, 1969a.

    Google Scholar 

  • Ewens, W.J., Mean fitness increases when fitnesses are additive. Nature 221: 1076, 1969b.

    Article  Google Scholar 

  • Ewens, W.J., Mathematical Population Genetics. Springer Verlag, Berlin-Heidelberg-New York. 1979. 325+xii pp.

    Google Scholar 

  • Gadgil, M., Dispersal: population consequences and evolution. Ecology 52: 253–260, 1971.

    Article  Google Scholar 

  • Gillespie, J.H., The role of migration in the genetic structure of temporally and spatially varying environments. III. Migration modification (ms.), 1979.

    Google Scholar 

  • Ginzburg, L.R., The equilibrium and stability for n alleles under the density-dependent selection. J. Theor. Biol. 68: 545–550. 1977.

    Article  MathSciNet  Google Scholar 

  • Hamilton, W.D. and R.M. May, Dispersal in stable habitats. Nature 269: 578–581, 1977.

    Article  Google Scholar 

  • Harrison, R., Dispersal polymorphisms in insects. Ann.Rev.Ecol.Syst. (to appear).

    Google Scholar 

  • Karlin, S., Models of multifactorial inheritance: I, multivariate formulations and basic convergence results. Theor.Pop.Biol. 15: 308–356, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  • Kimura, M., Some recent advances in the theory of population genetics. Jap. J. Hum. Genet. 10:43–48., 1965.

    Google Scholar 

  • Kingman, J.F.C., A matrix inequality. Quart. J. Math 12: 78–80, 1961a.

    Article  MathSciNet  MATH  Google Scholar 

  • Kingman, J.F.C., A mathematical problem in population genetics. Proc. Cambridge Phil. Soc. 57: 574–582, 1961b.

    MathSciNet  MATH  Google Scholar 

  • Lande, R., The maintenance of genetic variability by mutation in a polygenic character with linked loci. Genet. Res. 26: 221–235, 1976.

    Article  Google Scholar 

  • Levin, S.A., On the evolution of ecological parameters. Pages 3–26 in. P.F.Brussard, ed., Ecological Genetics: The Interface. Springer Verlag, Heidelberg, 1978

    Google Scholar 

  • Levin, S.A. and R.T. Paine, Disturbance, patch formation, and community structure. Proc. Nat. Acad.Sci.USA 72: 2744–2747, 1974.

    Article  Google Scholar 

  • Levin, S.A. and L.A. Segel, A model for the influence of predator pressure on aspect diversity in prey populations. (In preparation, 1980).

    Google Scholar 

  • Levin, S.A. and J.D. Udovic, A mathematical model of coevolving populations. Amer. Natur. Hl: 657–675, 1977.

    Google Scholar 

  • Levin, S.A., D. Cohen, and A. Hastings, Optimal strategies in patchy environments. (In preparation, 1980).

    Google Scholar 

  • Lewontin, R.C., Adaptation. Enciclopedia Einaudi Turin 1: 198–214, 1977.

    Google Scholar 

  • Maynard Smith, J., Evolution and the theory of games. Amer.Sci. 64: 41–45, 1976.

    Google Scholar 

  • Maynard Smith, J., Evolution and the theory of games. In_: W. Matthews (ed.), Mathematics in the Life Sciences. Lecture Notes in Biomathematics. Springer Verlag, Berlin-New York. 1977.

    Google Scholar 

  • Motro, U., Optimal rates of dispersion and migration in biological populations: I. Haploid models, (ms) 1979a.

    Google Scholar 

  • Motro, U., Optimal rates of dispersion and migration in biological populations: II Diploid models, (ms) 1979b.

    Google Scholar 

  • Mulholland, H.P. and C.A.B. Smith, An inequality arising in genetical theory. Amer. Math.Monthly 66: 673–683, 1959.

    Article  MathSciNet  Google Scholar 

  • Nagylaki, T., The evolution of one- and two-locus systems. Genetics 83: 583–600, 1976

    MathSciNet  Google Scholar 

  • Orzack, S.H., J.S. Sohn, K.D. Kallman, S.A. Levin and R. Johnston, Maintenance of the three sex chromosome polymorphism in the platyfish, xiphophorus macuiatus. Evolution, in press.

    Google Scholar 

  • Paine, R.T., Disaster, catastrophe, and local persistence of the sea palm Posteisia palmaeformis. Science 205: 685–687, 1979.

    Article  Google Scholar 

  • Paine, R.T. and S.A. Levin, Intertidal landscapes: disturbance and the dynamics of pattern. Ecological Monographs, to appear 1980.

    Google Scholar 

  • Rand, A.S., Predator-prey interactions and the evolution of aspect diversity. Atlas do Simposio Sobra a Biota Amazónica 5 (Zoologia): 73–83, 1967.

    Google Scholar 

  • Ricklefs, R.E. and K.E. O’Rourke, Aspect diversity in moths: a temperate-tropical comparison. Evolution 29: 313–324.

    Google Scholar 

  • Rocklin, S. and G. Oster, Competition between phenotypes. J. Math.Biol. 3: 225–262, 1976.

    Article  MATH  Google Scholar 

  • Roff, D.A., Population stability and the evolution of dispersal in a heterogeneous environment. Oecologia 19: 217–237, 1975.

    Article  Google Scholar 

  • Roughgarden, J., Resource partitioning among competing species. A coevolutionary approach. Theor.Pop.Biol. 9: 388–424, 1976.

    Article  MathSciNet  Google Scholar 

  • Roughgarden, J., Coevolution in ecological systems II. Results from “loop analysis” for purely density-dependent coevolution. In F.B. Christiansen and T. Fenchel (eds.), Symposium on the Measurement of Selection in Natural Populations. Lecture Notes in Biomathematics. Springer Verlag, Heidelberg, 1977.

    Google Scholar 

  • Scheuer, P.A.G. and S.P.H. Mandel, An inequality in population genetics. Heredity 13: 519–524, 1959.

    Article  Google Scholar 

  • Strathman, R., The spread of sibling larvae of sedentary marine invertebrates. Amer.Natur. 108: 29–44, 1974.

    Article  Google Scholar 

  • Slatkin, M., Selection and polygenic characters. Proc.Nat.Acad.Sci. 66: 87–93, 1970.

    Article  Google Scholar 

  • Slatkin, M., Frequency- and density-dependent selection on a quantitative parameter. Genetics (to appear, 1979b ).

    Google Scholar 

  • Slatkin, M. and R. Lande, Niche width in a fluctuating environment-density dependent model. Amer.Natur. 110: 31–55. 1976.

    Article  Google Scholar 

  • Slatkin, M. and J. Maynard Smith, Models of coevolution. Q.Rev.Biol, (to appear, 1979 ).

    Google Scholar 

  • Slatkin, M. and M.J. Wade, Group selection on a quantitative character. Proc. Nat. Acad. Sci. 75: 3531–3534. 1978.

    Article  MathSciNet  MATH  Google Scholar 

  • Wade, M.J., A critical review of the models of group selection. Quarterly Review of Biology 53: 101–114. 1978.

    Article  Google Scholar 

  • Wright, S., Adaptation and selection, pp. 365–389 in G.L. Jepson, G.G. Simpson, and E. Mayr (eds.), Genetics, Paleontology, and Evolution. Princeton University Press, Princeton, N.J. 1949.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Levin, S.A. (1980). Some Models for the Evolution of Adaptive Traits. In: Barigozzi, C. (eds) Vito Volterra Symposium on Mathematical Models in Biology. Lecture Notes in Biomathematics, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93161-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93161-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10279-3

  • Online ISBN: 978-3-642-93161-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation