Sorption Properties of Biofilms

  • Chapter
Sediments and Toxic Substances

Part of the book series: Environmental Science ((ENVSCIENCE))

Abstract

The distribution and fate of pollutants in soils, in sediments and in the water phase is highly influenced by sorption processes. Sorbing surfaces and materials can provide a sink for dissolved matter. If the conditions change, desorption may occur and, thus, turn the former sorbent into a new source of pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adams LF, Ghiorse WC (1987) Characterization of extracellular Mn2+-oxidizing activity and isolation of a Mn2+ oxidizing protein from Leptothrix discophora SS-1. J Bacteriol 169:1279–1285

    Google Scholar 

  • Aickin RM, Dean ACR, Cheetham AK, Skarnulis AJ (1979) Electron microscope studies on the uptake of lead by a Citrobacter sp. Microbios Lett 7:7–14

    Google Scholar 

  • Aiking H, Stijnman A, van Garderen C, van Heerikhuizen H, van’t Riet J (1984) Inorganic phosphate accumulation and cadmium detoxification in Klebsiella aerogenes NCTC 418 growing in continuous culture. Appl Environ Microbiol 47:374–377

    Google Scholar 

  • Altman E, Brisson J-R, Perry MB (1986) Structural studies of the capsular polysaccharide from Haemophilus pleumoniae serotype. Biochem Cell Biol 64:707–716

    Google Scholar 

  • Armstrong SM, Bärlocher F (1989a) Adsorption and release of amino acids from epilithic biofilms in streams. Freshwater Biol 22:153–159

    Google Scholar 

  • Armstrong SM, Bärlocher F (1989b) Adsorption of three amino acids to biofilms on glass beads. Arch Hydrobiol 115:391–399

    Google Scholar 

  • Aspinall GO (1982) General introduction. In: Aspinall GO (ed): The polysaccharides. Acad Press, New York, pp 1–18

    Google Scholar 

  • Bannerjee S, Duttagupta S, Chakrabarty AM (1983) Production of emulsifying agent during growth of Pseudomonas cepacia with 2,4,5-trichlorophenoxyacetic acid. Arch Microbiol 135:110–114

    Google Scholar 

  • Baughman GL, Paris DF (1981) Microbioal bioconcentration of organic pollutants from aqueous systems. Crit Rev Microbiol 8:205–228

    Google Scholar 

  • Bell JP, Teszos M (1987) Removal of hazardous organic pollutants by biomass adsorption. J Wat Poll Contr Fed 59:191–198

    Google Scholar 

  • Beveridge TJ (1981) Ultrastructure, chemistry and function of the bacterial wall. Int Rev Cytol 72:229–317

    Google Scholar 

  • Beveridge TJ (1984) Bioconversion of inorganic materials: mechanisms of the binding of metallic ions to bacterial walls and the possible impact on microbial ecology. In: Klug MJ, Reddy CA (eds) Current perspectives in Microbial Ecology. Am Soc Microb, Washington, DC, pp 601–607

    Google Scholar 

  • Beveridge TJ, Koval SF (1981) Binding of metals to cell envelopes of Escherichia coli K-12. Appl Environ Microbiol 42:325–335

    Google Scholar 

  • Beveridge TJ, Murray RGE (1976) Uptake and retention of metals by cell walls of Bacillus subtilis. J Bact 127:1502–1518

    Google Scholar 

  • Beveridge TJ, Murray RGE (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J Bact 141:876–887

    Google Scholar 

  • Beveridge TJ, Meloche JD, Fyfe WS, Murray RGE (1983) Diagenesis of metals chemically complexd to bacteria: Laboratory formation of metal phosphates, sulfides, and organic condensates in artificial sediments. Appl Envir Microbiol 45:1094–1108

    Google Scholar 

  • Bicknell B (1986) Interaction between soluble and surface-active substrates, bacteria and particles in a coral reef lagoon. PhD Thesis, The University of New South Wales, Kensington, NSW, Australia

    Google Scholar 

  • Black JP, Ford TE, Mitchell R (1988) Corrosion behaviour of metal-binding exopolymers from iron- and manganese-depositing bacteria. Corrosion ’88, March 21–25, St Lous, Missouri; paper No. 94

    Google Scholar 

  • Boes M, Caspary H (1987) Sielhautuntersuchungen — eine erfolgversprechende Methode zum Auffinden von Schwermetallemittenten im Kanalnetz. Korr Abw 34, 123–128

    Google Scholar 

  • Boogerd FC, de Vrin JPM (1987) Manganese oxidation by Leptothrix discophora. J Bact 169:498–494

    Google Scholar 

  • Brierley CL (1990) Metal immobilization using bacteria. In: Ehrlich HC, Brierley CL (eds) Microbial mineral recovery. McGraw-Hill, New York; pp 303–323

    Google Scholar 

  • Brierley CL, Kelly DP, Seal KJ, Best DJ (1985 a) Biotechnology principles and applications. Blackwell Scient, Oxford, pp 163–212

    Google Scholar 

  • Brierley JA, Brierley CL (1980) Biological methods to remove selected inorganic pollutants from uranium mine wastewater. In: Trudinger PA, Walter MR, Ralph BJ (eds) Biogeochemistry of Ancient and Modern Environments. Austral Acad Sci, Canberra; pp 661–667

    Google Scholar 

  • Brierley JA, Brierley CL, Dreher KT (1980) Removal of selected inorganic pollutants from uranium mine waste water by biological methods. In: Brawner CO (ed) First Intern Conf on Uranium Mine Waste Disposal. Soc Mining Engg Am Inst Mining, Metallurg and Petrol Eng, New York; pp 365–376

    Google Scholar 

  • Brierley JA, Brierley CL, Decker RF, Goyak GM (1988) Metal recovery. US Patent 4,789,481

    Google Scholar 

  • Brinckman FE, Jackson JA, Blair WR, Olson GJ, Iverson WP (1983) Ultratrace speciation and biogenesis of methyltin transport species in estuarine waters. In: Wong CS, Boyle E, Bruland KW, Burton JD, Goldberg ED (eds) Trace metals in sea water (NATO Conference Series 4:9) Plenum Press, New York, pp 39–72

    Google Scholar 

  • Brock TD, Gustafson J (1976) Ferric iron reduc tion by sulfur- and iron-oxidizing bacteria. Appl Environ Microbiol 32:567–571

    Google Scholar 

  • Brown MJ, Lester JN (1979) Metal removal in activated sludge: the role of bacterial extracellular polymers. Wat Res 13:817–837

    Google Scholar 

  • Brown MJ, Lester JN (1982 a) Role of bacterial extracellular polymers in metal uptake in pure bacterial culture and activated sludge — I. Effects of metal concentrations. Wat Res 16:1539–1548

    Google Scholar 

  • Brown MJ, Lester JN (1982 b) Role of bacterial extracellular polymers in metal uptake in pure bacterial culture and activated sludge — II. Effects of mean cell retention time. Wat Res 16:1549–1560

    Google Scholar 

  • Bruus JH, Nielsen PH, Keiding K (1992) On the stability of activated sludge flocs with implications to dewatering. Wat Res 26:1597–1604

    Google Scholar 

  • Cameron JA, Bunch CL, Huang SJ (1988) Microbial degradation of synthetic polymers. In: Houghton DR, Smith RN, Eggins HOW (eds) Biodeterioration 7, Elsevier Appl Sci, New York; pp 553–561

    Google Scholar 

  • Carlson CG (1979) Improved filtration of biosludges by enzyme treatment. Filtr Sep Jan/Feb 1979, pp 82–84

    Google Scholar 

  • Chafetz HS (1986) Marine peloids: a product of bacterially induced precipitation of calcite. J Sediment Petrol 56:812–817

    Google Scholar 

  • Characklis WG (1990) Biofilm processes. In: Charaeklis WG and Marshall KC (eds) Biofilms. John Wiley, New York, pp 195–232

    Google Scholar 

  • Characklis WG, Marshall KC (eds)(1990) Biofilms. John Wiley, New York

    Google Scholar 

  • Characklis WG, Turakhia MH, Zelver N (1990) Transport and interfacial transfer phenomena. In: Characklis WG, Marshall KC (eds) Biofilms. John Wiley, New York; pp 341–394

    Google Scholar 

  • Charley RC, Bull AT (1979) Bioaccumulation of silver by a multispecies community of bacteria. Arch Microbiol 123:239–244

    Google Scholar 

  • Chen XH, Vedry B, Rogalla F, Lesty Y, Lesavre J (1988) Copper fixation by biofilms in waste water treatment process. In: Astruc M, Lester JN (eds) Heavy metal hydrological cycle. Selper Ltd, London; pp 563–570

    Google Scholar 

  • Christensen BE (1989) The role of extracellular polysaccharides in biofilms. J Biotec 10, pp 181–196

    Google Scholar 

  • Christensen BE, Characklis WG (1990) Physical and chemical properties of biofilms. In: Characklis WG, Marshall KC (eds) Biofilms. John Wiley, New York; pp 93–130

    Google Scholar 

  • Cohen GH, Johnstone DB (1964) Extracellular polysaccharides of Azotobacter vinlandii. J Bact 88, pp 329–335

    Google Scholar 

  • Coleman RN, Paran JH (1991) Biofilm concentration of chromium. EnvironTechnol 12:1079–1094

    Google Scholar 

  • Cooney JJ, Hallas LE, Means JC (1981) Tin and microbes in the Chesepeake Bay, USA. In: Proc of the 3rd Intern Conf on heavy metals in the environment, Amsterdam. The Netherlands, Sept 14–18, pp 413–482, CEP Consultants Ltd, Edinburgh

    Google Scholar 

  • Corpe WA (1975) Metal-binding properties of surface materials from marine bacteria. Dev Ind Microbiol 16:249–255

    Google Scholar 

  • Costerton JW, Boivin J (1987) Microbially influenced corrosion. In: Mittelman MW, Geesey GG (eds) Biological fouling of industrial water systems. A problem solving approach. Wat Micro Associates, San Diego, pp 56–76

    Google Scholar 

  • Costerton JW, Boivin J (1991) Biofilms and Corrosion. In: Flemming H-C, Geesey GG (eds) Biofouling and biocorrosion in industrial water systems. Springer, Berlin, Heidelberg New York, pp 195–204

    Google Scholar 

  • Costerton JW, Irvin RT (1981) The bacterial glycocalyx in nature anddisease. Ann Rev Microbiol 35:299–324

    Google Scholar 

  • Costerton JW, Cheng K-J, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Ann Rev Microbiol 41:435–464

    Google Scholar 

  • Costerton JW, Marrie TJ, Cheng K-J (1985) Phenomena of bacterial adhesion. In: Savage DC, Fletcher MM (eds) Bacterial adhesion. Plenum Press, New York 1985; pp 3–44

    Google Scholar 

  • Cowen JP, Silver MW (1984) The association of iron and manganese with bacteria on marine macro particulate material. Science 224:1340–1342

    Google Scholar 

  • Dagostino L, Goodman A, Marshall KC (1991) Physiological responses induced in bacteria adhering to surfaces. Biofouling 4:113–119

    Google Scholar 

  • Deans JR, Dixon BG (1992) Uptake of Pb2+ and Cu2+ by novel biopolymers. Wat Res 26:469–472

    Google Scholar 

  • Decho AW (1990) Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanogr Mar Biol Ann Rev 28:73–153

    Google Scholar 

  • Doyle RJ (1989) How cell walls of Gram-positive bacteria interact with metal ions. In: Beveridge TJ, Doyle RJ (eds) Metal ions and bacteria. John Wiley, New York; pp 27–293

    Google Scholar 

  • Doyle RJ, Matthews TH, Streips UN (1980) Chemical basis for selectivity of metal ions by the Bacillus subtilis cell wall. J Bact 1431:471–480

    Google Scholar 

  • Dudman WF (1977) The role of surface polysaccharides in natural environments. In: Sutherland IW (ed) Surface carbohydrates of the procaryote cell. Acad. Press, New York, pp 537–414

    Google Scholar 

  • Dugan PR (1975) Bioflocculation and the accumulation of chemicals by floc-forming organisms. EPA-600/2–75–032, September 1975, Nat Tech Inform Service, Springfield, VA

    Google Scholar 

  • Dugan PR, Pickrum HM (1972) Removal of mineral ions from water by microbially produced polymers. Proc 27th Ind Waste Conf, Purdue Univ, Lafayette, IN; pp 1019–1032

    Google Scholar 

  • Duxbury T (1985) Ecological aspects of heavy metal responses in microorganisms. Adv Microb Ecol 8:185–235

    Google Scholar 

  • Ehrlich HL (1981) The geomicrobiology of iron. In: Geomicrobiology. Marcel Dekker, New York; pp 165–201

    Google Scholar 

  • Ehrlich HL (1990) Geomicrobiology. Marcel Dekker, New York, Basel; pp 557–602

    Google Scholar 

  • Eighmy TT, Maratea D, Bishop PL (1983) Electron microscopic examination of wastewater biofilm formation and structural components. Appl Environ Microbiol 45:1921–1931

    Google Scholar 

  • Ferris FG (1989) Metallic interactions with the outer membrane of Gram-negative bacteria. In: Beveridge TJ, Doyle RJ (eds) Metal ions and bacteria. John Wiley, New York; pp 295–323

    Google Scholar 

  • Ferris FG, Beveridge TJ, Fyfe WS (1986) Iron-silica crystallite nucleation by bacteria in a geothermal sediment. Nature (London) 320:609–611

    Google Scholar 

  • Ferris FG, Fyfe WS, Beveridge TJ (1987a) Bacteria as nucleation sites for authigenic minerals in a metal-contaminated lake sediment. Chem Geol 63:225–232

    Google Scholar 

  • Ferris FG, Fyge WS, Beveridge TJ (1987b) Manganese oxide deposition in a hot spring microbial mat. Geomicrobiol J 5:33–42

    Google Scholar 

  • Ferris FG, Schultze S, Witten TC, Fyfe WS, Beveridge TJ (1989) Metal interactions with microbial biofilms in acidic and neutral pH environments. Appl Envir Microbiol 55:1249–1257

    Google Scholar 

  • Filip Z (1975) Wechselbeziehungen zwischen Mikroorganismen und Tonmineralien und ihre Auswirkung auf die Bodendynamik. Habilitationsschrift, Universität Gießen

    Google Scholar 

  • Flemming HC (1991) Biofilms as a particular form of microbial life. In: Flemming HC, Geesey GG (eds) Biofouling and Biocorrosion in Industrial Wat Systems. Springer, Berlin Heidelberg New York, pp 1–7

    Google Scholar 

  • Flemming HC, Ruck W (1990) Lokalisierung von Schadstoffeinleitern vom Kanalnetz aus. In: Wagner R (Hrsg) Wasserkalender. Verlag Erich Schmidt, Berlin, pp 115–133

    Google Scholar 

  • Flemming H-C, Schaule G (1989) Biofouling auf Umkehrosmose- und Ultrafiltrationsmembranen. Teil II: Analyse und Entfernung des Belages. Vom Wasser 73:287–301

    Google Scholar 

  • Flemming CA, Ferris FG, Beveridge TJ, Bailey GW (1990) Remobilisation of toxic heavy metals adsorbed to bacterial wall-clay composites. Appl Envir Microbiol 56:3191–203

    Google Scholar 

  • Fletcher MM (1985) Effect of solid surfaces on the activity of attached bacteria. In: Savage DD, Fletcher MM (eds) Bacterial adhesion. Plenum Press, New York, pp 339–362

    Google Scholar 

  • Fletcher MM (1991) The physiological activity of bacteria attached to solid surfaces. Adv Microb Physiol 32:53–85

    Google Scholar 

  • Ford T, Mitchell R (1993) Microbial transport of toxic metals. In: Mitchell R (ed) Environmental Microbiology. John Wiley, New York, pp 83–101

    Google Scholar 

  • Friedrich E, Holesovsky U (1987) Enzymatische Schlamm-Stabilisierung. Entsorgungs Praxis 10/87:474–480

    Google Scholar 

  • Fry JC, Day MJ (1990) Plasmid transfer in the epilithon. In: Fry JC, Day MJ (eds) Bacterial genetics in natural environments. Chapman and Hall, London, pp 55–80

    Google Scholar 

  • Gadd GM (1988) Accumulation of metals by microorganisms and algae. In: Rehm HJ (ed) Biotechnology, Vol 6 B: Special microbial processes. VCH Verlags, Weinheim, Germany, pp 401–433

    Google Scholar 

  • Gantzer CJ et al. (1989) Group report: Exchange processes at the fluid-biofilm interface. In: Characklis WG, Wilderer P (eds) Structure and function of biofilms. John Wiley, New York, pp 73–89

    Google Scholar 

  • Gee AR, Dudeney AWL (1988) Adsorption and crystallisation of gold at biological surfaces. In: Norris PR, Kelly DP (eds) Biohydrometallurgy. Science and Technol Letters, Kew Surrey, UK, pp 437–451

    Google Scholar 

  • Geesey GG, Jang L (1989) Inteactions between metal ions and capsular polymers. In: Beveridge TJ, Doyle RJ (eds) Metal ions and bacteria. John Wiley, New York, pp 325–357

    Google Scholar 

  • Geesey G, Jang L (1990) Extracellular polymers for metal binding. In: Ehrlich HC, Brierley CL (eds) Microbial mineral recovery. McGraw-Hill, New York, pp 223–247

    Google Scholar 

  • Geesey GG, Mucht R, Costerton JW, Green RB (1978) Sessile bacteria: an important component of themicrobial population in small mountain streams. Limnol Oceanogr 23:1214–1223

    Google Scholar 

  • Geesey GG, Jang L, Jolley JG, Hankins MR, Iwaoka T, Griffiths PR (1988) Binding of metal ions by extracellular polymers of biofilm bacteria. Proc Int Conf Wat Wastewater Microbiol, Newport Beach, Ca; 8–11 Feb 1988; Vol. I, 26.1–26.11

    Google Scholar 

  • Gilmour CC, Tuttle JH, Means JC (1985) Tin methylation in sulfide bearing sediments. In: Sieglo AC, Hattori A (eds) Marine and estuarine biogeochemistry. Lewis Publishers Inc Chelsea, MI, pp 239–258

    Google Scholar 

  • Goddard PA, Bull AT (1988a) Accumulation of silver by growing and non-growing populations of Citrobacter intermedius B 6. Eur J Appl Microbiol 31:314–319

    Google Scholar 

  • Gold MS, Genetelli EJ (1978) Heavy metal complexation behavior in anaerobically digested sludges. Wat Res 12:505–512

    Google Scholar 

  • Guezennec J, Therène M (1988) A study of the influence of cathodic protection on the growth of SRB and corrosion in marine sediments by electrochemical techniques. In: Sequeira CAC, Tiller AK (eds) Microbial corrosion 1. Elsevier Appl Sci, London, New York, pp 256–264

    Google Scholar 

  • Gulas V, Bond M (1979) Use of exocellular polymers for thickening and dewatering activated sludge. J Wat Poll Contr Fed 51:798–807

    Google Scholar 

  • Gutekunst B (1988) Sielhautuntersuchungen zur Einkreisung schwermetallhaltiger Einleitungen. Schriftenreihe des Instituts für Siedlungswasserwirtschaft, UniversitätKarlsruhe, Band 49

    Google Scholar 

  • Gutekunst B (1989) Wechselwirkung zwischen Schwermetallen und Sielhaut. GWF Wasser Abwasser 130, 456–462

    Google Scholar 

  • Gutekunst B, Hahn HH (1985) Schwermetallgehalte in Sielhäuten — eine Möglichkeit zum Nachweis von Einleitungen schwermetallhaltigen Abwassers in die Kanallisation. Vom Wasser 65:127–137

    Google Scholar 

  • Hancock IC (1986) The use of gram-positive bacteria for the removal of metals from aqueous solution. In: Thompson R (ed) Trace Metal Removal from Aqueous Solutions. The Royal Society of Chemistry, London; pp 25–43

    Google Scholar 

  • Hartinger, L (1975) Komplexchemie in der Abwassertechnik. Vom Wasser 44, 69–117

    Google Scholar 

  • Harvey RW (1981) Lead-bacterial interactions in an estuarine salt marsch microlayer. PhD thesis, Stanford University, Stanford, 161 pp

    Google Scholar 

  • Harvey RW, Luoma SN (1985) Effect of adherent bacteria and bacterial extracellular polymers upon assimilation by Macoma balthica of sediment-bound Cd, Zn and Ag. Mar Ecol 22:281–289

    Google Scholar 

  • Hintelmann H, Ebinghaus R, Wilken R-D (1993) Accumulation of mercury(II) and methylmercury by microbial biofilms. Wat. Res. 27, pp 237–242

    Google Scholar 

  • Hughes MN, Poole RK (1989) Metals and micro-organisms. Chapman and Hall, London, pp 93–140

    Google Scholar 

  • Hutchins SR, Davidson MS, Brierley JA, Brierley CL (1986) Microorganisms in reclamation of metals. Ann Rev Microbiol 40:311–336

    Google Scholar 

  • Jackson TA (1978) The biogeochemistry of heavy metals in polluted lakes and streams at Flin Flon, Canada, a proposed method for limiting heavy-metal pollution of natural rivers. Environ Geol 2:173–189

    Google Scholar 

  • Jang LK, Brand W, Resong M, Mainieri W, Geesey GG (1990a) Feasibility of using alginate to absorb dissolved copper from aqueous media. Environ Prog 9:269–281

    Google Scholar 

  • Jang LK, Geesey GG, Lopez SL, Eastman SL, Wichlacz PL (1990b) Use of a gel-forming biopolymer directly dispensed into a loop fluidized bed reactor to recover dissolved copper. Wat Res 24:889–897

    Google Scholar 

  • Johnston CG, Kipphut GW (1988) Microbially mediated Mn(II) oxidation in an oligotrophic Arctic lake. Appl Environ Microbiol 54:1140–1145

    Google Scholar 

  • Joyce GH, Dugan PR (1970) The role of Hoc-forming bacteria in BOD removal from waste water. Dev Ind Microbiol 11:377–386

    Google Scholar 

  • Jungschaffer G, Reiner R, Sprössler B, Scorialo A (1988) Verfahren zum Verbessern der Entwässerbarkeit von biologischem Klärschlamm. Eur Pat 0 291 665 B 1 v. 25.3.88

    Google Scholar 

  • Kaesche H (1990) Die Korrosion der Metalle. 3. Auflage. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kaplan D, Christiaen D, Shoshana A (1987) Chelating properties of extracellular polysaccharides from Chlorella spp. Appl Environ Microbiol 53:2953–2956

    Google Scholar 

  • Kelly DP, Norris PR, Brierley CL (1979) Microbiological methods for the extraction and recovery of metals. In: Bull AT, Ellwood DC, Ratledge C (eds) Microbial Technology: Current Status, Future Prospects. Cambridge Univ Press, Cambride, pp 263–308

    Google Scholar 

  • Kennedy AFD, Sutherland IW (1987) Analysis of bacterial exopolysaccharides. Biotechnol Appl Biochem 9:12–19

    Google Scholar 

  • Kennedy KJ, Lu J, Mohn WW (1992) Biosorption of chlorophenols to anaerobic granular sludge. Wat Res 26:1085–1092

    Google Scholar 

  • Kim SH, Pirbazari M (1989) Bioactive adsorber model for industrial wastewater treatment. J Environ Eng 115:1235–1256

    Google Scholar 

  • Koch B, Ostermann M, Hoke H, Hempel D-C (1991) Sand and activated carbon as biofilm carriers for microbial degradation of phenols and nitrogen containing aromatic compounds. Wat Res 25:1–8

    Google Scholar 

  • Krumbein WE, Paterson DM, Stal LJ (eds) Biostabilization of sediments. Univ. Oldenburg, P.O.Box 2541, 26015 Oldenburg, Germany, ISBN 3-8142-0483-2

    Google Scholar 

  • Krynitsky JA, McLaren GW (1962) Some effects of microbial growths on surfactant properties of fuels. Biotechnol Bioeng IV, pp 357–367

    Google Scholar 

  • Lakshmanan VI, Chrisison J, Knapp RA, Scharer JM, Snmugasunderm V (1986) A review of bioadsorption techniques to recover heavy metals from mineral-processing streams. In: Proc Second Ann Gen Meet Biominet, CANMET Special Publication SP85–6, Can Gov Publ Centre, Ottawa, pp 75–96

    Google Scholar 

  • LaMotta EJ (1976) Internal diffusion and reaction in biological films. Environ Sci Technol 10:765–769

    Google Scholar 

  • LaRivière JWM (1955) The productivity of surface active compounds by micro-organisms and its possible significance in oil recovery. Ant Leuvenhoek 21:1–27

    Google Scholar 

  • Laschka D and Trumpp M (1991) Sielhautuntersuchungen zur Lokalisierung von AOX-Eminttenten im Kanalnetz. Korr. Abw. 38:495–496

    Google Scholar 

  • Laschka D, Braun F, Kalbfus W, Metzner G (1989) Schadstoffe im Klärschlamm. Korr Abw 36:706–713

    Google Scholar 

  • Lawrence JR, Korber DR, Hoyle BD, Costerton JW, Caldwell DE (1991) Optical sectioning of microbial biofilms. J Bact 173:6558–6567

    Google Scholar 

  • Lewandowski Z, Stoodley P, Altobelli S, Fukushima E (1993) Hydrodynamic and kinetics in biofilm systems — recent advances and new problems. 2nd Int Specialized Conf on Biofilm Reactors, 30.9.–1.10., Paris, pp 313–319

    Google Scholar 

  • Lindqvist R, Enfield CG (1992) Biosorption of Dichlorodiphenyltrichlormethane and hexachlorobenzene in groundwater and its implications for facilitated transport. Appl Environ Microbiol 58:2211–2218

    Google Scholar 

  • Lundgren DG (1989) Biotic and abiotic release of inorganic substances exploited by bacteria. In: Poindexter JS, Leadbetter ER (eds) Bacteria in nature. Plenum Press, New York, pp 293–335

    Google Scholar 

  • Lundgren DG, Boucheron J, Mahoney W (1983) Geomicrobiology of iron: mechanism of ferric iron reduction. In: Rossi G, Torma AE (eds) Recent Progress in Biohydrometallurgy. Assoc Mineraria Sarda, Iglesias, Italy, pp 55–70

    Google Scholar 

  • Luoma SN, Davis JA (1983) Requirements for modeling trace metal partitioning in oxidized estuarine sediments. Mar Chem 12:159–181

    Google Scholar 

  • Macaskie LE, Dean ACR (1987a) Use of immobilized biofilm of Citrobacter sp. for the removal of uranium and lead from aqueous flow. Enz Microbiol Technol 9:2–4

    Google Scholar 

  • Macaskie LE, Dean ACR (1987b) Uranium accumulation by a Citrobacter sp. immobilized as biofilm onvarious support materials. In: Neijssel OM, van der Meer RR, Luyben KChAM (eds) Proc 4th Eur Cong Biotehcnol, Elsevier, Amsterdam, pp 37–40

    Google Scholar 

  • Macaskie LE, Dean ACR (1988) Uranium accumulation by immobilized biofilms on a Citrobacter sp. In: Norris PR, Kelly DP (eds) Biohydrometallurgy. ScienceTechnol Lett, Kew Surrey, UK, pp 556–557

    Google Scholar 

  • Macaskie LE, Dean ACR, Cheetham AK, Jakeman RJB, Skarnulis AJ (1987c) Cadmium accumulation by a Citrobacter species: the chemical nature of the accumulated metal precipitate and its location on the bacterial cells. J Gen Microbiol 133:539–546

    Google Scholar 

  • Mackay D (1982) Correlation of bioconcentration factors. Environ Sci Technol 16:274–278

    Google Scholar 

  • MacNicol RD, Beckett PHT (1989) The distribution of heavy metals between the principal components of digested sewage sludge. Wat Res 23:199–206

    Google Scholar 

  • MacRae IC (1986) Removal of chlorinated hydrocarbons from water and wastewater by bacterial cells adsorbed to magnetite. Wat Res 20:1149–1152

    Google Scholar 

  • Mann S (1988) Molecular recognition in biomineralization. Nature (London) 332:119–124

    Google Scholar 

  • Mann S, Sparks NHC, Scott GHE, de Vrind-de Jong EW (1988) Oxidation of manganese and formation of Mn304 (hausmannite) by spore coats of a marine Bacillus sp. Appl Environ Microbiol 54:2140–2143

    Google Scholar 

  • Marshall KC (1969a) Orientation of clay particles sorbed on bacteria possessing different ionogenic surfaces. Biochim Biophys Acta 193:472–474 (?)

    Google Scholar 

  • Marshall KC (1969b) Studies by microelectrophoretic and microscopic techniques of the sorption of illite and montmorillonite to Rhizobia. J Gen Microbiol 56:301–306

    Google Scholar 

  • Marshall KC (1979) Biogeochemistry of manganese minerals. In: Trudinger PA, Swaine DJ (eds) Biogeochemical cycling of mineral-forming elements. Elsevier, Amsterdam pp 253–292

    Google Scholar 

  • Marshall KC (1988) Adhesion and growth of bacteria at surfaces in oligotrophic habitats. Can J Microb 34:503–506

    Google Scholar 

  • Marshman NA, Marshall KC (1981) Some effects of montmorillonite on the growth of mixed microbial cultures. Soil Biol Biochem 13:135–141

    Google Scholar 

  • Mateson JV, Characklis WG (1976) Diffusion into microbial aggregates. Wat Res 10:877–881

    Google Scholar 

  • McLean RJC, Beveridge TJ (1988) Influence of metal ion charge on their binding capacity to bacterial capsules. Abst 88th Ann Meet Am Soc Microbiol Q 146, pp 307

    Google Scholar 

  • McLean RJC, Beveridge TJ (1990) Metal-binding capacity of bacterial surfaces and their ability to form mineralized aggregates. In: Ehrlich HC, Brierley CL (eds) Microbial mineral recovery. McGraw-Hill, New York, pp 185–222

    Google Scholar 

  • Mittelman MW, Geesey GG (1985) Copper-binding characteristics of exopolymers from a freshwater-sediment bacterium. Appl Environ Microbiol 49:846–851

    Google Scholar 

  • Moriarty DJW, Hayward AC (1982) Ultrastructure of bacteria and the proportion of Grampositive bacteria in marine sediments. Microb Ecol 8:1–14

    Google Scholar 

  • Nealson KA (1983) The microbial manganese cycle. In: Krumbein WE (ed) Microbial Geochemistry. Blackwell Sci Publ, Oxford, pp 98–155

    Google Scholar 

  • Nealson KA, Ford J (1982) Surface enhancement of bacterial manganese oxidation: implications for aquatic environments. Geomicrobiology J 2:88–91

    Google Scholar 

  • Neu TR, Marshall KC (1991) Microbial “footprints” — a new approach to adhesive polymers. Biofouling 3:101–112

    Google Scholar 

  • Neufeld RD, Hermann ER (1975) Heavy metal removal by acclimated activated sludge. J Wat Poll Contr Fed 47:310–329

    Google Scholar 

  • Nichols PD, Henson JM, Guckert JB, Nivens DE, White DC (1985) Fourier transforminfrared spectroscopic methods for microbial ecology: analysis of bacteria, bacteriapolymer mixtures and biofilms. J Microbiol Meth 4:79–94

    Google Scholar 

  • Nichols WW, Dorrington SM, Slack MPE, Walmsley HL (1988) Inhibition of tobramycin diffusion by binding to alginate. Antimicrob Agents Chemother 32:518–523

    Google Scholar 

  • Norberg A (1983) Production of extracellular polysaccharide by Zoogloea ramigera and its use as an adsorbing agent for heavy metals. PhD dissertation, University of Lund, Lund, Sweden 1983

    Google Scholar 

  • Norberg AB, Persson H (1984) Accumulation of heavy-metal ions by Zoogloea ramigera. Biotech Bioeng 26:239–246

    Google Scholar 

  • O’Shea TA, Mancy KH (1979) The effect of pH and hardness metal ions on the competitive interaction between trace metal ions and inorganic and organic complexing agents found in natural waters. Wat Res 12:703–711

    Google Scholar 

  • Palmer RJ, Friedman EI (1990) Wat. relations and photosynthesis in the cryptoendolithic microbial habitats of hot and cold deserts. Microb Ecol 19:111–118

    Google Scholar 

  • Paris DF, Lewis DL, Barnett JT (1977) Bioconcentration of Toxaphene by microorganisms. Bull Envir Cont Toxicol 17:564–572

    Google Scholar 

  • Pedersen K (1990) Biofilm development on stainless steel and PVC surfaces in drinking water. Wat Res 24:239–243

    Google Scholar 

  • Pettibone GW, Cooney JJ (1988) Toxicity of methyltins to microbial populations in estuarine sediments. J Ind Microbiol 2:373–378

    Google Scholar 

  • Plessner O, Klapatch T, Guerinot ML (1993) Siderophore utilization by Bradorhi zobium japonicum. Appl Environ Microbiol 59:1688–1690

    Google Scholar 

  • Pooley FD (1982) Bacteria accumulate silver during leaching of sulphide ore minerals. Nature 296:642–643

    Google Scholar 

  • Potts M (1994) Desiccation tolerance of procaryotes. Microb Rev 58:755–805

    Google Scholar 

  • Ramsay B, McCarthy J, Guerra-Santos L, Kaeppeli O, Fiechter A (1988) Biosurfactant production and diauxic growth of Rhodococcus aurantiacus when using n-alkanes as the carbon source. Can J Microbiol 34:1209–1212

    Google Scholar 

  • Rees DA (1976) Stereochemistry and binding behavior of carbohydrate chains. In: Whelan WJ (ed) Biochemistry of carbohydrates, Vol. 5. University Park Press, Baltimore, pp 1–42

    Google Scholar 

  • Rendelman JA (1978a) Metal-polysaccharide complexes. Part I. Food Chem 3:47–79

    Google Scholar 

  • Rendelman JA (1978 b) Metal-polysaccharide complexes. Part II. Food Chem 3:127–162

    Google Scholar 

  • Roberson EB, Firestone MK (1992) Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Appl Environ Microbiol 58:1284–1291

    Google Scholar 

  • Rosenberg E, Kaplan N (1986) Surface-active properties of Acinetobacter exopolysaccharides. In: Inouye M (ed) Bacterial outer membranes as a model system. Interscience Publ, New York, pp 311–342

    Google Scholar 

  • Rudd T, Sterritt RM, Lester JN (1983) Stability constants and complexation capacities of complexes formed between heavy metals and extracellular polymers from activated sludge. J Chem Tech Biotechnol 33A:374–380

    Google Scholar 

  • Rudd T, Sterrittt RM, Lester JN (1984) Formation and conditional stability constants of complexes formed between heavy metals and bacterial extracellular polymers. Wat Res 18:379–384

    Google Scholar 

  • Sar N, Rosenberg E (1983) Emulsifier production by Acinetobacter calcoaceticus strain. Curr Microbiol 9:309–314

    Google Scholar 

  • Schaule G (1992) Primäradhäsion von Pseudomonas diminuta an Filtermembranen. Dissertation, Universität Tübingen

    Google Scholar 

  • Schaule G, Flemming HC, Poralla K (1992) Forces involved in primary adhesion of Pseudomonas diminuta to filtration membranes. 5th Int Conf on Microb Ecol, Barcelona, Sept 8–12 1992

    Google Scholar 

  • Schmitt J, Nivens D, Flemming HC, Symader W, White DC (1992) In-situ-Monitoring der Entwicklung von Biofilmen mit Hilfe der FTIR-ART-Spektroskopie und die Rolle der EPS für die Sorptionseigenschaften von Biofilmen. Jahrestagung der Fachgruppe Wasserchemie in der GdCh, Dresden

    Google Scholar 

  • Scott JA, Palmer SJ (1988) Cadmium bio-sorption by bacterial exopolysaccharide. Biotechnol Lett 10:21–24

    Google Scholar 

  • Scott JA, Palmer SJ, Ingham J (1986b) Microbial metal adsorption enhancement by naturally excreted polysaccharide coatings. In: Eccles H, Hunt S (eds) Immobilization of ions by bio-sorption. Ellis Horwood, Chichester, UK, pp 81–88

    Google Scholar 

  • Scott JA, Sage GK, Palmer SJ, Powell DS (1986a) Cadmium adsorption by bacterial capsular polysaccharide coatings. Biotechnol Lett 8:711–714

    Google Scholar 

  • Silver S (1981) Mechanism of bacterial resistances to toxic heavy metals: arsenic, antimony, silver, cadmium and mercury. NBS Special Publ, pp 301–324

    Google Scholar 

  • Silverman MP, Ehrlich H (1964) Microbial formation and degradation of minerals. Adv Appl Microbiol 6:153–206

    Google Scholar 

  • Skyring GW (1981) Sulphate reduction in modern sediments and implications for ore formation. BMR J Aust Geol Geophys 6: 335

    Google Scholar 

  • Skyring GW, Bauld J (1990) Microbial mats in Australian coastal environments. Adv Microb Ecol 11:461–498

    Google Scholar 

  • Smiley DW, Wilkinson BJ (1983) Survey of taurine uptake and metabolism in Staphylococcus aureus. J Gen Microbiol 129:2421–2428

    Google Scholar 

  • Smith JJ, Geesey GG (1989) Detection and quantification of polymeric pyruvate in bacterial exopolymers and aquatic sediments. Abstr Am Soc Microbiol, New Orleans, pp 287

    Google Scholar 

  • Söhngen NL (1915) Einfluß von Kolloiden auf mikrobiologische Prozesse. Centralbl. f. Bakt. Abt. II Bd. 26:621–647

    Google Scholar 

  • Sterrit RM, Lester JN (1986) Heavy metal immobilization by bacterial extracellular polymers. In: Eccles H, Hunt S (eds) Immobilization of ions by bio-sorption. Ellis Horwood, Chichester, UK, pp 121–134

    Google Scholar 

  • Stotzky G (1980) Surface interactions between clay minerals and microbes, viruses and soluble organics, and the probable importance of these interactions to the ecology of microbes in soil. In: Berkeley RCW, Lynch JM, Rutter PR, Vincent B (eds) Microbial adhesion to surfaces. Ellis Horwood, Chichester, pp 231–247

    Google Scholar 

  • Strandberg GW, Shumate SE, Parrott JR (1981) Microbioal cells as biosorbents for heavy metals: accumulation of uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa. Appl Environ Microbiol 41:237–245

    Google Scholar 

  • Sutherland IW (1977) Microbial exopolysaccharide synthesis. In: Stanford PA, Laskin A (eds) Extracellular microbial polysaccharides. Am Chem Soc, Washington DC, pp 40–57

    Google Scholar 

  • Sutherland IW (1984) Microbial exopolysaecharides — their role in microbial adhesion in aqueous systems. CRC Crit Rev Microbiol 10:173–201

    Google Scholar 

  • Thayer JS, Brinckman FE (1982) Denitrification and removal of heavy metals from waste water by immobilized microorganisms. Appl Biochem Biotechnol 6:3–13

    Google Scholar 

  • Tomioka N, Uchiyama H, Yagi O (1992) Isolation and characterization of cesium-accumulating bacteria. Appl Environ Microbiol 58:1019–1023

    Google Scholar 

  • Tsezos M, Seto W (1986) The adsorption of chloroethanes by microbial biomass. Wat Res 20:851–858

    Google Scholar 

  • Turakhia MH, Cooksey KE, Characklis WG (1983) Influence of a calcium-specific chelant on biofilm removal. Appl Environ Microbiol 46:1236–1238

    Google Scholar 

  • Tyler PA, Marshall KC (1967) Microbial oxidation of manganese in hydroelectric pipelines. Antonie van Leuwenhoek 33:171–183

    Google Scholar 

  • Uhlinger DJ, White DC (1983) Relationship between physiological status and formation of extracellular polysaccharide glycocalyx in P. atlantica. Appl Environ Microbiol 45:64–70

    Google Scholar 

  • Urey JC, Kricher JC, Boy Ian JM (1976) Bioconcentration of four pure PCB isomers by Chlorella pyrenoidosa. Bull Envir Contam Toxicol 16:81–85

    Google Scholar 

  • Vasse JM, Dazzo FB, Truchet GL (1984) Re-examination of capsule development and lectin-binding sites on Rhizobium japonicum 311 B 110 by the glutaraldehyde/ruthenium red/uranyl acetate staining method. J Gen Microbiol 130:3037–3047

    Google Scholar 

  • Walker SG, Flemming CA, Ferris FG, Beveridge TJ, Gailey GW (1989) Physicochemical interaction of Escherichia coli cell envelopes and Bacillus subtilis cell walls with two clays and ability of the composite to immobilize heavy metals from solution. Appl Environ Microbiol 55:2976–2984

    Google Scholar 

  • Weber WJ, McGinley PM, Katz LE (1991) Sorption phenomena in subsurfacesystems: concepts, models and effects on contaminant fate and transport. Wat Res 25:499–528

    Google Scholar 

  • Whitfield C (1988) Bacterial extracellular polysaccharides. Can J Microbiol 34:415–420

    Google Scholar 

  • Wiatr CL (1990) Controlling industrial slime. Eur Pat 0388 115 v. 12.3.90

    Google Scholar 

  • Williams FD, Schwarzhoff RH (1978) Nature of the swarming phenomenon in Proteus. Ann Rev Microbiol 32:101–122

    Google Scholar 

  • Zevenhuizen LPTM (1981) Cellular glycogen, β-1,2-glucan, poly-β-hydroxybutyric acid and extracellular polysaccharides in fast-growing species of Rhizobium. Ant v Leuwenhoek J Microbiol Serol 47:481–497

    Google Scholar 

  • Zuckerberg A, Diver A, Perri Z, Gutnick DL, Rosenberg E (1979) Emulsifier of Arthobacter RAG-1; chemical and physical properties. Appl Environ Microbiol 37:414–420

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Flemming, HC., Schmitt, J., Marshall, K.C. (1996). Sorption Properties of Biofilms. In: Calmano, W., Förstner, U. (eds) Sediments and Toxic Substances. Environmental Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79890-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79890-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79892-4

  • Online ISBN: 978-3-642-79890-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation