Cell Adhesion and Protein Adsorption on Gradient Surfaces

  • Conference paper
Progress in Pacific Polymer Science 3
  • 231 Accesses

Abstract

A new method for preparing a wettability gradient on polymer surfaces was developed. Low density polyethylene sheets were treated in air with corona from a knife-type electrode whose power gradually increases along the sample length. The polymer surfaces oxidized gradually with the increasing power and the wettability gradient was created on the surfaces as evidenced by the measurement of water contact angles, Fourier-transform infrared spectroscopy in the attenuated total reflectance mode, and electron spectroscopy for chemical analysis. The wettability gradient surfaces prepared were used to investigate the interactions of model protein and cells in terms of the surface hydrophilicity/hydrophobicity of polymeric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Elwing H, Welin S, Askendal A, Nilsson U, Lundstrom I (1987) J. Colloid Interface Sci. 119: 203

    Article  CAS  Google Scholar 

  2. Elwing H, Askendal A, Lundstrom I (1987) Prog. Colloid Polym Sci. 74: 103

    Article  Google Scholar 

  3. Elwing H, Askendal A, Lundstrom I (1987) J. Biomed. Mater. Res. 21: 1023

    Google Scholar 

  4. Elwing H, Nilsson B, Svensson KE, Askendal A, Nilsson UR, Lundstrom I (1988) J. Colloid Interface Sci. 125: 139

    Article  CAS  Google Scholar 

  5. Elwing H, Askendal A, Lundstrom I (1989) J. Colloid Interface Sci. 128: 296

    Article  CAS  Google Scholar 

  6. Klintstrom SW, Wikstrom M, Askendal A, Elwing H, Lundstrom I, Karlsson JO, Renvert S (1990) Colloids Surf. 44: 51

    Article  Google Scholar 

  7. Elwing H, Golander CG (1990) Adv. Colloid Interface Sci. 32: 317

    Article  CAS  Google Scholar 

  8. Hlady V, Golander C, Andrade JD (1988) Colloids Surf. 33: 185

    Article  CAS  Google Scholar 

  9. Golander CG, Lin YS, Hlady V, Andrade JD (1990) Colloids Surf. 49: 289

    Article  Google Scholar 

  10. Hlady V (1991) Appl. Spectrosc. 45: 246

    Article  CAS  Google Scholar 

  11. Lee HB, Andrade JD (1988) Trans. 3rd World Biomaterials Congr. p.43

    Google Scholar 

  12. Lee HB (1989) In: Saegusa T, Higashimura T, Abe A (eds) Frontiers of macromolecular science. Blackwell, Oxford, p. 579

    Google Scholar 

  13. Lee JH, Park JW, Lee HB (1990) Polymer (Korea) 14: 646

    CAS  Google Scholar 

  14. Pitt WG (1989) J. Colloid Interface Sci. 133: 223

    Article  CAS  Google Scholar 

  15. Golander CG, Pitt WG (1990) Biomaterials 11: 32

    Article  CAS  Google Scholar 

  16. Lee JH, Kim HG, Khang GS, Lee HB, Jhon MS (1992) J. Colloid Interface Sci. 151: 563

    Article  CAS  Google Scholar 

  17. Lee JH, Kim HW, Pak PK, Lee HB (1993) J. Polymer Sci, Polymer Chem. submitted

    Google Scholar 

  18. Owens DK (1975) J. Appl. Polymer Sei. 19: 265

    Article  CAS  Google Scholar 

  19. Iwata H, Kishida A, Suzuki M, Hata Y, Ikada Y (1988) J. Polymer Sei., Polymer Chem. 26: 3309

    Article  CAS  Google Scholar 

  20. Steinhauser H, Ellinghorst G (1984) Angew. Makromol. Chem. 120: 177

    Google Scholar 

  21. Thompson LH (1979) In: Jakoby WB, Pastan IH (eds) Methods in enzymology: Cell culture. Academic Press, New York, p. 308

    Google Scholar 

  22. van Wachem PV, Beugeling T, Feijen J, Bantjes A, Detmers JP, van Aken WG (1985) Biomaterials 6: 403

    Article  Google Scholar 

  23. van Wachem PV, Hogt AH, Beugeling T, Feijen J, Bantjes A, Detmers JP, van Aken WG (1987) Biomaterials 8: 323

    Article  Google Scholar 

  24. Lee JH, Park JW, Lee HB (1991) Biomaterials 12: 443

    Article  CAS  Google Scholar 

  25. Kang IK (1987) Ph. D. Thesis, Kyoto University, Japan, Chs. 6–7

    Google Scholar 

  26. Lee JH (1988) Ph. D. Thesis, University of Utah, USA, Ch. 6

    Google Scholar 

  27. Lee JH, Kopecek J, Andrade JD (1989) J. Biomed. Mater. Res. 23: 351

    Google Scholar 

  28. Lee JH, Kopeckova P, Kopecek J, Andrade JD (1990) Biomaterials 11: 455

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, H.B., Lee, J.H. (1994). Cell Adhesion and Protein Adsorption on Gradient Surfaces. In: Ghiggino, K.P. (eds) Progress in Pacific Polymer Science 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78759-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78759-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78761-4

  • Online ISBN: 978-3-642-78759-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation