Abstract

Among the 340 isotopes of the 98 chemical elements occurring in the minerals of the Earth, Moon, Mars, and meteorites, the majority are nonradioacitive. Many of them are absolutely stable in accordance with the law of conservation of energy, as the energy potential of the system originated by their radioactive decay would exceed that of the initial system. For instance, α-decay of 16O or fission of 28Si into 16O and 12C are absolutely prohibited. Another part of the “stable” isotopes is actually capable of radioactive decay. For instance, in zircon, the atomic nucleus of 96Zr could transform into two nuclei of 48Ca. In this and many other similar cases, however, at the energy efficiency of the radioactive decay, the latter practically does not occur, due to the excessive height and low quantum-mechanical permeability of the energy barrier. Only in some cases, as the sensitivity of the measurements increases, is it possible to detect the extent of radioactivity in such isotopes. For instance, only one atom of 130Te isotope decays in 1 g of mineral tellurobismutite per month.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bowen R (1988) Isotopes in the Earth Sciences. Elsevier, London

    Book  Google Scholar 

  • De Paolo DJ (1988) Neodymium isotope geochemistry. An introduction. Springer, Berlin Heidelberg New York, 187 pp

    Book  Google Scholar 

  • Faure G (1986) Principles of isotope geology 2nd edn New York, 589 pp

    Google Scholar 

  • Florkowsky T, Morawska L, Rozanski K (1988) Natural production of radionuclides in geological formations. New York, Oxford, J Rad Appl Instrumen Nuclear Geophysics, vol 2, pp 1–14

    Google Scholar 

  • Jager E, Hunziker JC (eds) (1979) Lectures in isotope geology Springer, Berlin Heidelberg New York, 332 pp

    Google Scholar 

  • Kerridge JF, Mattews MS (eds) (1988) Meteorites and the early solar system. Univ of Arizona Press, Tucson 1269 pp

    Google Scholar 

  • Natural fission reactors (1978). International Atomic Energy Agency, Vienna

    Google Scholar 

  • Ozima M, Podosek F (1983) Noble gas geochemistry. Cambridge Univ Press, Cambridge, 367 pp

    Google Scholar 

  • Shukolyukov YuA, Levski LK (1972) Geochemistry and cosmochemistry of noble gas isotopes. Atomizdat, Moscow, 335 pp (in Russian)

    Google Scholar 

References

  • Borsuk AM (ed) (1979) Criterions of the reliability of the radiological dating methods. Nauka, Moscow, 208 pp (in Russian)

    Google Scholar 

  • Dalrymple GB, Lanphere MA (1969) Potassium argon dating. Principles, techniques and applications to geochronology. Freeman, San Francisco, 258 pp

    Google Scholar 

  • Damon PE (1970) A theory of ‘real’ K-Ar clocks. Eclogae Geol Helv 63: 69–76

    Google Scholar 

  • Faure G (1986) The K-Ar method of dating. In: Faure G (ed) Principles of isotope geology 2nd edn. Wiley, New York, chap 6, pp 66–93

    Google Scholar 

  • Hunziker JC (1979) Potassium argon dating. In: Jaeger E, Hunziker J (eds) Lectures in isotope geology. Springer, Berlin Heidelberg New York, pp 52–77

    Chapter  Google Scholar 

  • Morozova IM, Ashkinadze GSh (1971) The migration of atoms of raae gases in minerals. Nauka, Leningrad, 115 pp (in Russian)

    Google Scholar 

  • Schaeffer OA, Zähringer J (eds) (1966) Potassium argon dating. Springer, Berhn Heidelberg New York, 234 pp

    Google Scholar 

  • Steiger RH, Jäger EJ (1977) Subcommission on Geochronology. Convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36: 359–62

    Article  Google Scholar 

References

  • Bray CJ, Spooner ETC, Hall CM, York D, Bills TM, Krueger HW- (1987) Laser probe 40Ar/39Arconventional K/Ar dating of illites associated with the McClean unconformity-related uranium deposits. North Saskatchewan, Canada. Can J Earth Sci 24(1): 10–23

    Article  Google Scholar 

  • Burgess R, Turner G, Laurenzi M, Harris JW (1989) Laser probe dating of individual chnopyroxene inclusions in Premier eclogitic diamonds. Earth Planet Sci Lett 94 (1–2): 22–28

    Article  Google Scholar 

  • Dalrymple GB, Duiììeld WA (1988) High precision 40Ar/39Ar dating of Oligocene rhyolites from the Mogollon-Datil volcanic field using a continuous laser system. Geophys Res Lett 15: 463–466

    Article  Google Scholar 

  • Dalrymple GB, Alexander EC Jr, Lanphere MA, Kraker GP (1981) Irradiation of samples for 40Ar/39Ar dating using the Geological Survey TRIGA reactor. US Geol Surv Prof Pap 1176: 55

    Google Scholar 

  • Glass BP, Hall CM, York D (1986) laser probe dating of North American tektite fragments from Barbados and the age of the Eocene-Oligocene boundary. Chem Geol Isotope Geosci Sec 59: 181–186

    Google Scholar 

  • Ivanenko VV, Karpenko MI (1987) New possibilities for determining age spectra of 40Ar/39Ar by means of lasers. Dokl Akad Nauk USSR 296(3): 710–714

    Google Scholar 

  • Layer PW, Hall CM, York D (1987) The derivation of age spectra of single grains of hornblende and biotite by laser step-heating. Geophys Res Lett 14: 757–760

    Article  Google Scholar 

  • LoBello Ph, Feraud G, Hall CM, York D, Lavina P, Bernat M (1987) 40Ar/39Ar step-heating and laser fusion dating of a Quaternary pumice from Neschers, Massif Central, France: the defeat of xenocrystic contamination. Chemical Geology Isotope Geosci Sec 66: 61–71

    Google Scholar 

  • Lovera OM, Richter FM, Harrison TM (1989) The 40Ar/39Ar thermochronometry for slowly cooled samples having a distribution of diffusion domain sizes. J Geophys Res 94(B12): 17917–17935

    Article  Google Scholar 

  • Maluski H, Monie P (1988) 40Ar/39Ar Laser probe multi-dating inside single biotites of a Variscan orthogneiss (Pinet, Massif Central, France). Chem Geol Isotope Geosci Sec 73(3), 9(3): 245–265

    Article  Google Scholar 

  • McDougall I, Harrison TM (1988) Geochronology and thermochronology by the 40Ar/39Ar Method. Oxford Univ Press, New York, 212 pp

    Google Scholar 

  • Megrue GH (1973) Spatial distribution of 40Ar/39Ar ages in lunar breccia 14301. J Geophys Res 78: 3216–3221

    Article  Google Scholar 

  • Merrihue C, Turner G (1966) Potassium-argon dating by activation with fast neutrons. J Geophys Res 71: 3852–2857

    Google Scholar 

  • Muller HW, Plieninger T, James OB, Schaeffer OA (1977) Laser probe 40Ar/39Ar dating of material from consortium breccia 73215. Thermill RB (ed) Houston, Texas. Geochim Cosmochim Acta, Suppl 8. New York, Pergamon. Proc 8th Lunar Science Conf, pp 1489–1499

    Google Scholar 

  • Phillips D, Onstott TC (1988) Argon isotopic zoning in mantle phlogopite, Geology 16: 542–546

    Article  Google Scholar 

  • Schaeffer OA (1982) Laser microprobe 40Ar/39Ar dating of individual grains. In: Currie (ed) Nuclear and chemical dating techniques. Am Chem Soc Symp 176: 516

    Google Scholar 

  • Sutter JF, Härtung JB (1984) Laser microprobe 40Ar/39Ar dating of mineral grains in situ. Scanning electron microsc 4: 1525–1529

    Google Scholar 

  • Villa IM, Huneke JC, Wasserburg GJ, (1983) 39Ar recoil losses and presolar ages in Allende inclusions. Earth Planet Sci Lett 63: 1–12

    Article  Google Scholar 

  • York D, Hall CM (1986) Continuous-laser probe thin section chrontouring of sediments (Abstr). Terra Cognita 6: 117

    Google Scholar 

  • York D, Hall CM, Yanase Y, Hanes JA, Kenyon WJ (1981) 40Ar/39Ar dating of terrestrial minerals with a continuous laser. Geophys Res Lett 8: 1136–1138

    Google Scholar 

References

  • Faure G (1986) Principles of isotope geology, 2nd edn Wiley, 589 pp

    Google Scholar 

  • Faure G, Powell JL (1972) Strontium isotope geology. Springer, Berlin Heidelberg New York, 188 pp

    Book  Google Scholar 

  • Gorochov IM (1985) Rb-Sr method of isotope geochronology. Energoatomisdat, Moscow, 153 pp (in Russian)

    Google Scholar 

  • Jager E, Hunziker JC (eds) (1979) Lectures in isotope geology. Springer, Berhn Heidelberg New York

    Google Scholar 

  • Kuptzov VM (1986) The absolute geochronology of bottom sediments of oceans and seas. Nauka, Moscow, 271 pp (in Russian)

    Google Scholar 

  • Moorbath S, O’Nions RK, Pankhurst RJ (1975) The evolution of early Precambrian crustal rocks at Isua, West Greenland — geochemical and isotopic evidence. Earth Planet Sci Lett 27: 229–239

    Google Scholar 

  • Morton JP (1985) Rb-Sr dating of diagenesis and source age of clays in Upper Devonian black shale of Texas. Geol Soc Am Bull 96: 1043–1049

    Article  Google Scholar 

References

  • DePaolo DJ (1988) Neodymium isotope geochemistry: an introduction. Springer, Berlin Heidelberg New York, 187 pp

    Book  Google Scholar 

  • DePaolo DJ, Wasserburg GJ (1976) Nd isotopic variations and petrogenetic models. Geophys Res Lett 3: 249–252

    Article  Google Scholar 

  • Faure G (1986) Principles of isotope geology, 2nd edn. Wiley, 589 pp

    Google Scholar 

  • Hamilton PJ, Evenson NM, O’Nions RK, Smith HS, Erlank AJ (1979) Sm-Nd dating of Onvervacht Group volcanics, Southern Africa. Nature 279: 298–300

    Google Scholar 

  • Lugmair GW, Scheinin, Marti K (1975) Sm-Nd age and history of ApoUo 17 basalt 75075: evidence for early differentiation of the lunar exterior. Proc 6th Lunar Sci Conf, pp 1419–1429

    Google Scholar 

  • Patchett PJ (1989) Radiogenic isotope geochemistry of rare-earth elements. Geochemistry and mineralogy of rare-earth elements. Rev Mineral 21: 25–44

    Google Scholar 

References

  • Allègre CJ, Albarède F, Grunenfelder M, Koppel V (1974) 232Th/208Pb zircon geochronology in Alpine and non-Alpine environment. Contrib Mineral Petrol 43: 163–194

    Google Scholar 

  • Bibikova EV (1989) U-Pb geochronology of the early evolution of ancient shields. Nauka, Moscow, 180 pp (in Russian)

    Google Scholar 

  • Boltwood BB (1907) On the ultimate disintegration products of the radioactive elements. Am J Sci 4: 77–88

    Google Scholar 

  • Compston W, Pidgeon RT (1987) Jack Hills: a further occurrence of very ancient detrital zircons in western Austraha. Nature 34: 123–125

    Google Scholar 

  • Compston W, Wilhams IS, Meyer C (1984) U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. J Geophys Res 89 (Suppl): B525–531

    Article  Google Scholar 

  • Froude DO, Ireland TR, Kinny PD, Williams IS, Compston W, Williams IR, Myers JS (1983) Ion microprobe identification of 4100–4200 Myr-old terrestrial zircons. Nature: 616–618

    Google Scholar 

  • Goldich SS, Mudrey MG (1972) Dilatancy model for discordant U-Pb ages. In: Tugarinov AI (ed) Contributions to recent geochemistry and analytical chemistry, Vinogradov Volume. Nauka, Moscow, pp 415–418

    Google Scholar 

  • Kober B (1986) Whole-grain evaporation for 207Pb/206Pb-age-investigations on single zircons using a double-filament thermal ion source: Contrib Mineral Petrol 93: 482–490

    Google Scholar 

  • Kober B (1987) Single-zircon evaporation combined with Pb+ emitter bedding for investigations using thermal ion mass spectrometry, and implications to zirconology. Contrib Mineral Petrol 96: 63–71

    Article  Google Scholar 

  • Krasnobaev AA (1986) Zircon as indicator of geological processes. Nauka, Moscow, 146 pp (in Russian)

    Google Scholar 

  • Krogh TE (1973) A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determination. Geochim Cosmochim Acta 37: 485–494

    Article  Google Scholar 

  • Krogh TE (1982) Improved accuracy of U-Pb zircon ages by the creation of more concordant systems using an air abrasion technique. Geochim Cosmochim Acta 46: 637–649

    Article  Google Scholar 

  • Nier AO (1939) The isotopic constitution or radiogenic leads and the measurement geologic time. Phys Rev 55: 153–163

    Article  Google Scholar 

  • Nier AO (1940) A mass spectrometer for routine isotope abundance measurements. Rev Sci Instrum 11: 212–216

    Article  Google Scholar 

  • Poldervaart A (1955) Zircons in rocks. 1. Sedimentary rocks. Am J Sci 253: 433–461

    Article  Google Scholar 

  • Poldervaart A (1956) Zircon in rocks. 2. Igneous rocks. Am J Sci 254: 521–554

    Article  Google Scholar 

  • Shukolyukov Yu A, Gorochov IM, Levchenkov OA (1974) Graphical methods in isotope geology. Moscow, Nedra, 207 pp (in Russian)

    Google Scholar 

  • Silver LT, Deutsch S (1963) Uranium-lead isotopic variations in zircon — a case study. J Geol 71: 721–758

    Article  Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two- stage model. Earth Planet Sci Lett 26: 207–226

    Article  Google Scholar 

  • Steiger RH, Jäger E (1977) Subcommission on geochronology, convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36: 359–362

    Article  Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon, saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64: 295–304

    Article  Google Scholar 

  • Wetherill GW (1956) Discordant uranium-lead Ages, I Trans Am Geophys Union 37: 320–326

    Google Scholar 

  • Zartman RE, Doe BR (1981) Plumbotectonics — the model. Tectonophysics 75: 135–162

    Article  Google Scholar 

References

  • Allégre CJ, Staudacher T, Sarda P (1986) Rare gas systematics: formation of the atmosphere, evolution and structure of the Earth’s mantle. Earth Planet Sci Lett 81: 127–150

    Article  Google Scholar 

  • Amari S, Ozima M, Imamura M (1986) Search for the extra-terrestrial materials in deep sea sediments. Mem Natl Inst Polar Res Spec Iss N41: 338–347

    Google Scholar 

  • Hebeda EH, Schultz L, Freundel M (1987) Radiogenic, fissiogenic and nucleogenic noble gases in zircons. Earth Planet Sci Lett 85: 79–90

    Article  Google Scholar 

  • Jambon A (1986) Solubility of He, Ne, Ar, Kr and Xe in a basalt melt in the range 1250–1600 °C. Geochemical implications. Geochim Cosmochim Acta 50: 401–408

    Article  Google Scholar 

  • Kennedy BN, Hiyagon H, Reynolds JH (1990) Crustal neon: a striking uniformity. Earth Planet Sci Lett 98: 277–286

    Article  Google Scholar 

  • Lux G (1987) The behavior of noble gases in sihcate hquids: solution, diffusion, bubbles and surface effects, with apphcations to natural samples. Geochim Cosmochim Acta 51: 1549–1560

    Article  Google Scholar 

  • Mamyrin BA, Tolstikhin JN (1983) Hehum isotopes in nature. Elsevier, Amsterdam

    Google Scholar 

  • Ozima M, Podosek F (1983) Noble gas geochemistry. Cambridge Univ Press, Cambridge, 367 pp

    Google Scholar 

  • Shukolyukov YuA (1982) Products of fission of heavy elements on the Earth. Energoizdat Moscow, p. 127 pp (in Russian)

    Google Scholar 

  • Shukolyukov YuA, Dang Vuh Minh (1984) Products of fission of trans uranium elements in space. 1984, Nauka Moscow, 119 pp (in Russian)

    Google Scholar 

  • Torgersen T (1989) Terrestrial hehum degassing fluxes and the atmospheric hehum budget imphcations with respect to the degassing processes of continental crust. Chem Geol (Isotope Geosci Sect) 79: 1–14

    Article  Google Scholar 

References

  • Chen JH and Pallister JS (1981) Lead isotopic studies of the Samail Ophiolite, Oman. J Geophys Res 86: 2699–2708

    Article  Google Scholar 

  • Chernyshev IV, Pavlov DI (1982) Lead isotope studies of the stratiform Pb-Zn ore deposits of the south-eastern marginal land of the Siberial platform. In: 5th International Conference on Geochemistry, Cosmochemistry, and Isotope Geology. Nikko, Japan, pp 47–48

    Google Scholar 

  • Chernyshev IV, Troitsky VA, Zhuravlev DZ (1986) Pb, Sr and Nd isotopes in minerals of tungsten deposits. Terra Cognita 6: 226–227

    Google Scholar 

  • Cumming GL, Richards JR (1975) Ore lead isotope ratios in a continuously changing Earth. Earth Plan Sci Lett 28: 155–171

    Article  Google Scholar 

  • Cumming GL, Robertson DK (1969) Isotopic composition of lead from the Pine Point deposit. Econ Geol 64: 731–732

    Article  Google Scholar 

  • Doe BR, Zartman RE (1979) Plumbotectonics: the Phanerozoic. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp 22–70

    Google Scholar 

  • Doe BR, Steven TA, Delevaux MH, Stacey JS, Lipman PW, Fisher FS (1979) Genesis of ore deposits in the San Juan volcanic field, Southwestern Colorado — lead isotope evidence. Econ Geol 74: 1–26

    Google Scholar 

  • Faure G (1986) Principles of isotope geology. New York, 464 pp

    Google Scholar 

  • Fehn U, Doe BR, Delevaux MH (1983) The distribution of lead isotopes and origin of Kuroko deposits in the Hokuroku district, Japan. Econ Geol Mon. 5: 488–506

    Google Scholar 

  • Gale NH, Spooner ETC, Potts PJ (1981) The lead and strontium isotope geochemistry of metalliferous sediments, associated with Upper Cretaceous ophiolitic rocks in Cyprus, Syria and the Sultanate of Oman. Can J Earth Sci 18: 1290–1302

    Google Scholar 

  • Gulson BL (1985) Shale-hosted lead-zinc deposits in northern Australia: lead isotope variations. Econ Geol 80: 2001–2012

    Article  Google Scholar 

  • Gulson BL (1986) Lead isotopes in mineral exploration. Elsevier, Amsterdam, 245 pp

    Google Scholar 

  • Koppel V, Grunenfelder M (1979) Isotope geochemistry of lead. In: Koppel V, Grunenfelder M (eds) Lectures in isotope geology. Springer, Berlin Heidelberg NewYork, pp 134–153

    Chapter  Google Scholar 

  • Kramers JD (1975) Lead, uranium, strontium, potassium and rubidium in inclusion-bearing diamonds and mantle derived Xenoliths from Southern Africa. Earth Planet Sci Lett 42: 58–70

    Article  Google Scholar 

  • Sato K (1975) Unilateral isotopic variation of Miocene ore leads from Japan. Econ Geol 70: 800–805

    Article  Google Scholar 

  • Sato K, Delevaux MH, Doe BR (1981) Lead isotope measurements on ores, igneous and sedimentary rocks from the kuroko mineralization area. Geochem J 15: 135–140

    Article  Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two- stage model. Earth Plan Sci Lett 26: 207–221

    Article  Google Scholar 

  • Stacey JS, Doe BR, Silver LT, Zartman RE (1977) Plumbotectonics II A, Precambrian massive sulfide deposits. US Geol Surv Open File Report 76–476: 26 p

    Google Scholar 

  • Vaasjoki M, Gulson BL (1986) Carbonate-hosted base metal deposit: lead isotope data bearing on their genesis and exploration. Econ Geol 81: 156–172

    Article  Google Scholar 

References

  • Bigeleisen J, Mayer MG (1947) Calculation of equilibrium constants for isotopic exchange reactions. J Chem Phys 13: 261–267

    Article  Google Scholar 

  • Bottinga Y (1969) Carbon isotope fractionation between graphite, diamond, and carbon dioxide. Earth Planet Sci Lett 5: 301–307

    Article  Google Scholar 

  • Chiba H, Chacko T, Clayton RN, Goldsmith JR (1989) Oxygen isotope fractionations involving diopside, forsterite, magnetite, and calcite: apphcation to geothermometry. Geochim Cosmochim Acta 53: 2985–2995

    Article  Google Scholar 

  • Clayton RN, Goldsmith JR, Karel KJ, Mayeda TK, Newton RC (1975) Limits on the effect of pressure on isotopic fractionation. Geochim Cosmochim Acta 39: 1107–1201

    Article  Google Scholar 

  • Galimov EM (1973) Izotopy Ugleroda v Neftegazovoy Geologii (Carbon isotopes in oil-gas geology) Nedra, Moscow, 384 pp

    Google Scholar 

  • Kieffer SW (1982) Thermodynamics and lattice vibrations of minerals: 5. Applications to phase equilibria, isotopic fractionations, and high pressure thermodynamic properties. Rev Geophys Space Phys 20: 827–849

    Article  Google Scholar 

  • O’Neil JR (1986) Theoretical and experimental aspects of isotopic fractionation. In: Valley JW, Taylor HP Jr, O’Neil JR (eds) Stable isotopes in high temperature geological processes. Rev Mineral 16: 1–40

    Google Scholar 

  • Polyakov VB, Kharlashina NN (1989) The effect of pressure on the equihbrium isotopic fractionation in sohds. In: Wand U, Strauch G (eds) Isotopes in Nature. Fifth Workshop Meeting, Central Institute of Isotope and Radiation Research, Leipzig, 735–745

    Google Scholar 

  • Roginsky SZ (1956) Teoreticheskie Osnovy Izotopnykh Metodov Izucheniya Khimicheskikh Reaktsy (Theoretical principles of isotopic methods for investigating chemical reactions) Academy of Sciences USSR Press, Moscow, 614 pp

    Google Scholar 

  • Suzuoki, Epstein S (1976) Hydrogen isotope fractionation between OH-bearing minerals and water. Geochim Cosmochim Acta 40: 1229–1240

    Article  Google Scholar 

  • Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc Lond 562–581

    Google Scholar 

References

  • Hoefs J (1987) Stable isotope geochemistry. Springer, Berhn Heidelberg NewYork

    Google Scholar 

  • Valley JW, Taylor HP, O’Neil JR Jr (eds) (1986) Stable isotopes in high temperature geological processes. Rev Mineral 16: 1–570

    Google Scholar 

References

  • Clayton RN (1986) High temperature isotope effects in the early solar system. Rev Mineral 16: 129–164

    Google Scholar 

  • Friedman I, O’Neil JR (1977) Compilation of stable isotope fractionation factors of geochemical interest. In: Fleischer M (ed) Data of geochemistry, 6th edn. US Gov Printing Office, Washington, DC

    Google Scholar 

  • Javoy M (1977) Stable isotopes and geothermometry. J Geol Soc Lond 133: 609–636

    Article  Google Scholar 

  • Longstaife FJ (1979) The oxygen isotope geochemistry of archean granitoids. In: Barber F (ed) Trondhjemites, dacites and related rocks. Developments in petrology, 6. Elsevier, Amsterdam, pp 363–399

    Google Scholar 

  • O’Neil JR (1979) Stable isotope geochemistry of rocks and minerals. In: Jager E, Hunziker JC (eds) Lectures in isotope geology. Springer, Berhn Heidelberg New York

    Google Scholar 

  • O’Neil JR (1986) Theoretical and experimental aspects of isotopic fractionation. Rev Mineral 16: 1–40

    Google Scholar 

  • Pokrovsky BG, Vinogradov VI (1990) Isotope investigations of alkah rocks of Middle and Western Siberia. In: Schukoliukov lU (ed) Isotope geochemistry and kosmochemistry. Nauka, pp 144–159

    Google Scholar 

  • Taran YuA, Pokrovsky BG, Glavatskikh SF (1987) Condition of hydrothermal alteration of rocks of the Mutnovskaya geothermal system deduced from isotopic data. Geochimia 11: 1569–1579

    Google Scholar 

  • Taylor HP (1977) Water-rock interactions and origin of HjO in granitic batholites. J Geol Soc Lond 133: 509–558

    Article  Google Scholar 

  • Taylor HP Jr, Sheppard SMF (1986) Igneous rocks: Processes of isotopic fractionation and isotope systematics. Rev Mineral 16: 227–272

    Google Scholar 

References

  • Galimov EM (1985) The biological fractionation of isotopes. Academic Press, Orlando, 261 pp

    Google Scholar 

  • Pilhnger CT (1984) Light element stable isotopes in meteorites — from grams to picograms. Geochim Cosmochim Acta 48: 2739–2766

    Article  Google Scholar 

  • Rumble D, Hoering TC, Grew ES (1977) The relation of carbon isotopic composition to graphitization of carbonaceous materials from the Narragansett Basin, Rhode Island. Carnegie Inst Wash Year Book 76: 623–625

    Google Scholar 

References

  • Alt JC, Anderson TF, Bonnell L (1989) The geochemistry of sulfur in a 1.3 km section of hydrothermally altered oceanic crust, DSDP Hole 504B. Geochim Cosmochim Acta 53: 1011–1023

    Article  Google Scholar 

  • Berner RA (1989) Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over Phanerozoic time. Global Planet Change 1: 97–177

    Article  Google Scholar 

  • Grinenko WA, Grinenko LN (1974) Geochemistry of sulfur isotopes. Nauka, Moscow, 274 pp (in Russian)

    Google Scholar 

  • Hoefs J (1987) Stable isotope geochemistry, 3rd edn. Springer, Berlin Heidelberg New York, 241 pp

    Google Scholar 

  • Ohmoto H (1986) Stable isotope geochemistry of ore deposits. Stable isotopes in high temperature geological processes. Rev Mineral 16: 491–556

    Google Scholar 

  • Vinogradov VI (1980) Role of sedimentary cycle in the geochemistry of sulfur isotopes. Nauka, Moscow, 192 pp (in Russian)

    Google Scholar 

References

  • Becker RN, Clayton BN (1977) Nitrogen isotopes in igneous rocks. OES Trans Am Geophys Union 58: 636

    Google Scholar 

  • Bräuer K, Stiehl G, Wand U, Gehre M (1990) 15N variations of rocks from the Lusatian Granodiorit Massif, GDR. In: Wand U, Strauch G (eds) Proceedings of the Fifth Working Meeting Isotopes in Nature. 25–29 September, 1989, Leipzig Akad der Wissenschaften der DDR Zentrahnstitut für Isotopen und Strahlenforschung pp 247–254

    Google Scholar 

  • Haendel D, Mühle K, Nitzsche H-M, Stiehl G, Wand U (1986) Isotopic variation of the fixed nitrogen in metamorphic rocks. Geochim Cosmochim Acta 50: 749–758

    Article  Google Scholar 

  • Javoy M, Pineau F, Delorme H (1986) Carbon and nitrogen isotopes in the mantle. Chem Geol 57: 41–62

    Article  Google Scholar 

  • Letolle R (1980) Nitrogen-15 in the natural environment chap 10. In: Fritz P, Fontes JCh (eds) Handbook of environmental isotope geochemistry. Elsevier, Amsterdam, pp 407–433

    Google Scholar 

  • Richet P, Bottinga Y, Javoy M (1977) A review of hydrogen, carbon, nitrogen, oxygen, sulphur and chlorine stable isotope fractionation among gaseous molecules. Annu Rev Earth Planet Sci 5: 65–110

    Article  Google Scholar 

  • Sweeney RC, Liu KK, Kaplan IR (1978) Oceanic nitrogen isotope and their uses in determining the sources of sedimentary nitrogen. In: Robinson BW (ed) Stable isotopes in Earth Science. Dep Sci Ind Res Bull 220: 9–26

    Google Scholar 

References

  • Brooks C, James DE, Hart SR (1976) Ancient lithosphere: Its role in young continental volcanism. Science 193: 1086–1094

    Article  Google Scholar 

  • Burke WH, Denison RE, Hetherington EA, Koepnick RB, Nelson NF, Otto JB (1982) Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology 10: 516–519

    Article  Google Scholar 

  • Faure G (1986) Principles of isotope geology, 2nd edn. John Wiley & Sons, 589 pp

    Google Scholar 

  • Faure G, Powell JL (1972) Strontium isotope geology. Springer, Berhn Heidelberg New York, 188 pp

    Book  Google Scholar 

  • Staudigel H, Hart SR, Richardson SH (1981) Alteration of the oceanic crust: processes and timing. Earth Planet Sci Lett 52: 311–327

    Article  Google Scholar 

Further Reading

  • DePaolo DJ (1981) A neodymium and strontium isotopic study of the Mesozoic calc-alkaline granitic batholiths of the Sierra Nevada and Peninsular Ranges, California. J Geophys Res 86(B11): 10470–10488

    Article  Google Scholar 

  • DePaolo DJ (1988) Neodymium isotope geochemistry: an introduction. Springer, Berhn Heidelberg New York, 187 pp

    Book  Google Scholar 

  • DePaolo DJ, Wasserburg GJ (1979) Petrogenetic mixing models and Nd-Sr isotopic patterns. Geochim Cosmochim Acta 43: 615–627.

    Article  Google Scholar 

  • Patchett PJ (1989) Radiogenic isotope geochemistry of rare-earth elements. Geochemistry and mineralogy of rare-earth elements. Rev Mineral 21: 25–44

    Google Scholar 

  • Piepgras DJ, Wasserburg GJ, Dasch E J (1979) The isotopic composition of Nd in different ocean water masses. Earth Planet Sci Lett 45: 223–236

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shukolyukov, Y.A. et al. (1995). Isotopic Mineralogy. In: Marfunin, A.S. (eds) Methods and Instrumentations: Results and Recent Developments. Advanced Mineralogy, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78526-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78526-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78528-3

  • Online ISBN: 978-3-642-78526-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation