Neural and Random Boolean Networks

  • Chapter
Models of Massive Parallelism

Part of the book series: Texts in Theoretical Computer Science. An EATCS Series ((TTCS))

  • 143 Accesses

Abstract

One of the fundamental features of cellular automata is the homogeneity of the underlying cellular space. It is natural to ask whether this is a fundamental restriction or just a convenient assumption. In order to gain some insight into this question, it is necessary to relax our restriction on the homogeneity of the space and allow more general interconnections between the sites of the space. This chapter discusses the nature of the resulting generalizations and compares the power of the resulting models vis-a-vis Turing machines and cellular automata.

Article Note

If a man will begin with certainties, he shall end in doubts; but if he will be content to begin with doubts, he shall end with certainties.

Francis Bacon

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Biafore: Universal computation in few-body automata. Complex Systems 7:3 (1993) 221–239

    MathSciNet  Google Scholar 

  2. L. Babai, V.T. Sos: Sidon sets in groups and induced subgraphs on Cayley graphs. Europ. J. Combin. 6 (1985) 101–114

    MathSciNet  MATH  Google Scholar 

  3. E. Bishop: Constructive analysis. Springer-Verlag, Berlin, 1985

    Book  MATH  Google Scholar 

  4. L. Blum, M. Shub, S. Smale: On a theory of computation over the real numbers; NP-completeness, recursive functions and universal machines. Bull, of the Amer. Math. Soc. 21 (1989) 1–46

    MathSciNet  MATH  Google Scholar 

  5. H.S.M Coxeter, W.O. Moser. Generators and relations for discrete groups. Springer-Verlag, New York, 1972

    MATH  Google Scholar 

  6. C. Fields: Consequences of nonclassical measurement for the algorithmic description of continuous dynamical systems. J. Exper. and Theoret. Artif. Intelligence 1 (1989) 171–178

    Article  Google Scholar 

  7. S. P. Franklin, M. Garzon: Neural computability. In Progress in Neural Networks, Omid Omidvar (ed.). Ablex, Norwood NJ 1990, pp 127–145

    Google Scholar 

  8. S. P. Franklin, M. Garzon: Global dynamics in neural networks. Complex Systems 3:1 (1988) 29–36

    MathSciNet  Google Scholar 

  9. S.P. Franklin, M. Garzon: On stability and solvability (Or, when does a neural network solve a problem?). Minds and Machines 2 (1992) 71–83

    Article  Google Scholar 

  10. S.P. Franklin, M. Garzon: Computation by discrete neural nets. In: Mathematical perspectives on neural nets, P. Smolensky, M. Mozer, D. Rumelhart (eds.). Lawrence Erlbaum Publishers, in press

    Google Scholar 

  11. F. Fogelman-Soulie, Y. Robert, M. Tchuente: Automata networks in computer science. Princeton University Press, Princeton NJ, 1987

    Google Scholar 

  12. M.R Garey, D. Johnson: Computers and intractability: a guide to the theory of NP-completeness. W.H. Freeman, San Francisco, 1978

    Google Scholar 

  13. M. Garzon, F. Botelho: Stability and Observability. In: Proc. 6th Neural Inf. Proc. Conf. Morgan Kaufmann, San Mateo CA, 1994, pp 455–462 and 1171–1172

    Google Scholar 

  14. M. Garzon, S. P. Franklin: Global dynamics in neural networks II. Complex Systems 4:5 (1990) 509–518

    MathSciNet  MATH  Google Scholar 

  15. M. Garzon and S. Franklin: Neural Computability II. Ext. abs. in: Proc. 3rd Int. Joint Conf. on Neural Networks, Washington D.C. I (1989) 631–637. Final version in J. of Artificial Neural Systems 1 (1994)

    Google Scholar 

  16. M. Garzon, S.P. Franklin, W. Baggett, W. Boyd, D. Richardson: Design and testing of a general purpose neuro-computer. J. Parallel Distrib. Comput. 14 (1992) 203–220

    Article  Google Scholar 

  17. C.D. Godsil, W. Imrich: Embedding graphs in Cayley graphs. Graphs and Combinatorics 3 (1987) 39–43

    Article  MathSciNet  MATH  Google Scholar 

  18. E. Goles, S. Martinez: Neural and automata networks (dynamical behavior and applications). Kluwer, Dordrecht, 1990

    MATH  Google Scholar 

  19. R. Hartley and H. Szu: A comparison of the computational power of neural network models. Proc. IEEE First Int. Conf. on Neural Networks III (1987) 17–22

    Google Scholar 

  20. S. Haykin: Neural networks: a comprehensive approach. Macmillan, New York, 1994

    Google Scholar 

  21. J.E. Hopcroft, J.D. Ullman: Introduction to automata theory, languages and computation. Addison-Wesley, Reading MA, 1979

    MATH  Google Scholar 

  22. J.J. Hopfield: Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Science 79 (1982) 2554–8

    Article  MathSciNet  Google Scholar 

  23. J.J Hopfield and D.W. Tank: Computing with neural circuits: a model. Science 233: 4764 (1986) 625–633

    Article  Google Scholar 

  24. S.A. Kauffman: The origins of order (self-organization and selection in evolution). Oxford University Press, Oxford, 1993

    Google Scholar 

  25. S. Levy: Artifical life. Jonathan Cape, London, 1992

    Google Scholar 

  26. W.S. McCulloch, W. Pitts: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5 (1943) 115–133

    Article  MathSciNet  MATH  Google Scholar 

  27. I. Parberry: A primer on the complexity of neural networks. Pitman and Hall, London, 1988

    Google Scholar 

  28. J.L. Prince: Very Large Scale Integration. Springer-Verlag, New York, 1980

    Google Scholar 

  29. D. E. Rumelhart, G. Hinton, J. L. McClelland: A general framework for parallel distributed processing. In: Parallel Distributed Processing, vol. 1. D. E. Rumelhart, J.L. McClelland, et al. (eds.). MIT Press, Cambridge MA, 1986

    Google Scholar 

  30. T.J. Sejnowski, C.R. Rosenberg: Parallel networks that learn to pronounce english text. Complex Systems 1 (1987) 145–68

    MATH  Google Scholar 

  31. T. Toffoli, N. Margolus: Cellular automata machines. MIT Press, Cambridge MA, 1987

    Google Scholar 

  32. G. Vichniac: Simulating physics with cellular automata. Physica 10D (1984) 96. Reprinted in: Cellular Automata, Proc. Los Alamos Conference. North-Holland, Amsterdam, 1983

    MathSciNet  Google Scholar 

  33. S. Wolfram: Theory and applications of cellular automata. World Scientific, Singapore, 1986

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Garzon, M. (1995). Neural and Random Boolean Networks. In: Models of Massive Parallelism. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77905-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77905-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77907-7

  • Online ISBN: 978-3-642-77905-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation