Semi-totalistic Automata

  • Chapter
Models of Massive Parallelism

Part of the book series: Texts in Theoretical Computer Science. An EATCS Series ((TTCS))

  • 140 Accesses

Abstract

In view of how tractable linear rules turn out to be, one is encouraged to investigate similar questions for more general rules. A natural next step is to make the next state of a center cell depend, not linearly on the full local distribution of neighboring cells, but rather on the their density and, possibly, its own state. For instance, under a majority rule for an elementary celullar automaton the center cell polls its neighbors for a state and goes with the majority (ties are broken arbitrarily by the center cell, for instance by kee** its current state). These rules are called semi-totalistic. In the particular case of elementary automata, it is necessary to reduce this total count to a binary value. The simplest way to achieve this reduction is to set up a minimal threshold value for the count to become 1.

Article Note

Aye on the shores of darkness there is light, And precipices show untrodden green, There is a budden morrow in midnight, There is a triple sight in blindness keen.

John Keats

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Albert and K. Culik II: A simple universal cellular automaton and its one-way and totalistic version. Complex Systems 1 (1987) 1–16

    MathSciNet  MATH  Google Scholar 

  2. E.R. Banks: Information processing and transmission in cellular automata. Doctoral dissertation, MIT, 1971

    Google Scholar 

  3. R. Bartlett: Discrete computation in the continuum. Doctoral dissertation, Department of Mathematical Sciences, The University of Memphis, 1994

    Google Scholar 

  4. C. Bays: Candidates for the game of Life in three dimensions. J. Complex Systems 1 (1987) 373–400

    MathSciNet  MATH  Google Scholar 

  5. C. Bays: The discovery of a new glider for the game of three-dimensional life. J. Complex Systems 4:6 (1987) 373–400

    Google Scholar 

  6. C. Bays: A new game of three-dimensional life. J. Complex Systems 5:1(1991) 15–18

    MathSciNet  MATH  Google Scholar 

  7. C. Bays: Classification of semitotalistic cellular automata in three dimensions. Complex Systems 2:2 (1988) 235–254

    MathSciNet  MATH  Google Scholar 

  8. E.R. Berlekamp, J.H. Conway, R. K. Guy: Winning ways for your mathematical plays, vol. 2. Academic Press, New York, 1982

    Google Scholar 

  9. H. K. Buening, T. Ottman: Kleine Universale mehrdimensionale Turing– maschinen. Elektron. Inf. und Kybernetik 13 (1977) 179–201

    MATH  Google Scholar 

  10. E.F. Codd: Cellular Automata. Academic Press, New York, 1968

    MATH  Google Scholar 

  11. A.K. Dewdney: Computer recreations. Scientific American 252:5 (1985) 18–24

    Article  Google Scholar 

  12. M. Gardner: The fantastic combinations of John Conway’s new game of ‘life’. Scientific American (Oct. 1970) 100–123

    Google Scholar 

  13. E. Goles, S. Martinez: Neural networks: theory and applications, Kluwer, Amsterdam, 1990

    MATH  Google Scholar 

  14. E. Goles, J. Olivos: Comportement périodique des fonctions à seuil binaires et applications. Discr. Appl. Math. 3 (1981) 93–105

    Article  MathSciNet  MATH  Google Scholar 

  15. E. Goles, M. Tchuente: Iterative behavior of one-dimensional threshold automata. Discr. Appl. Math. 8 (1984) 319–322

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Gordon: On the computational power of totalistic cellular automata. Math. Syst. Theory 20:1 (1987) 43–52

    Article  MATH  Google Scholar 

  17. E. Jen: Invariant strings and pattern recognizing properties of one- dimensional cellular automata. J. Stat. Physics 43:1–2 (1986) 243–265

    Article  MathSciNet  Google Scholar 

  18. Y. Kobuchi: A note on symmetrical cellular spaces. Inform. Process. Lett. 25:6 (1987) 413–415

    Article  MathSciNet  MATH  Google Scholar 

  19. C. G. Langton: Self-reproduction in cellular automata. In: Proc. Los Alamos workshop on cellular automata. North-Holland, Amsterdam, 1983, pp. 135–144

    Google Scholar 

  20. C. Lee: Synthesis of a cellular computer. In: Applied automata theory. Julius T. Ton (ed.): Academic Press, 1968, pp. 217–234

    Google Scholar 

  21. K. Lindgreen, M.G. Nordhal: Universal computation in simple one- dimensional cellular automata. Complex Systems 4:3 (1990) 299–318

    MathSciNet  Google Scholar 

  22. N. Margolus: Physics-like models of computation. Physica D 10 (1984) 83–95

    Article  MathSciNet  Google Scholar 

  23. K. Preston, Jr, M.J.B. Duff: Modern cellular automata. Plenum Press, New York, 1984

    Google Scholar 

  24. A.R. Smith III: Simple Computation-universal cellular spaces. J. Assoc. Comput. Mach. 18 (1971) 339–353

    Article  MathSciNet  MATH  Google Scholar 

  25. H. Szwerinski: Symmetrical one-dimensional cellular spaces. Inform, and Control 67:1–3 (1985) 167–172

    Article  MathSciNet  Google Scholar 

  26. T. Toffoli & N. Margolus: Cellular automata machines (a new environment for modeling). MIT Press, Cambridge MA, 1987

    Google Scholar 

  27. A. M. Turing: On computable numbers, with an application to the Entscheidungsproblem. Proc. London Math. Soc. 42 (1936) 230–265.

    Article  Google Scholar 

  28. A. M. Turing A correction, ibid 43 (1936) 544–546

    Google Scholar 

  29. J. von Neumann, A. W. Burks (ed.): Theory of self-reproducing automata. University of Illinois Press, Urbana, 1966

    Google Scholar 

  30. S. Wolfram: Statistical mechanics of cellular automata. Reviews of Modern Physics 55:3(1983) 601–644. Reprinted in [Wo3]

    Article  MathSciNet  MATH  Google Scholar 

  31. S. Wolfram: Universality and complexity in cellular automata. In: Proc. of a conference on Cellular Automata in Los Alamos, North-Holland, Amsterdam, 1983. Reprinted in [Wo3]

    Google Scholar 

  32. S. Wolfram: Theory and Applications of cellular automata. World Scientific, Singapore, 1986

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Garzon, M. (1995). Semi-totalistic Automata. In: Models of Massive Parallelism. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77905-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77905-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77907-7

  • Online ISBN: 978-3-642-77905-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation