Elemental composition of suspended matter in the Scotia-Weddell Confluence area during spring and summer 1988 (EPOS Leg 2)

  • Conference paper
Weddell Sea Ecology
  • 240 Accesses

Summary

During austral spring and summer 1988 the upper 500 m of water column in the Scotia-Weddell Confluence was sampled for the elemental composition of total suspended matter. For particulate organic carbon surface water concentrations ranged between 2.5 and 15 μmol/1, with an estimated 19 to 47% of this pool being detrital carbon. In late November, the highest surface water particulate organic carbon concentrations (15/μmol/1) occurred in the Confluence area where they coincided with a maximum in particulate Si (1.7 /μmol/1). Later in the season particulate Si in the Confluence area decreased to ≤0.3 μmol/1. In the Scotia Sea on the contrary, surface water particulate Si increased with time and reached 3 μmol/1 in late December. For particulate Ca and Sr in surface water, strong gradients are observed across the Scotia Front (e.g. Ca: from 230 to 10 nmol/1; Sr: from 1.0 to 0.1 nmol/1), with highest concentrations in the Scotia Sea. In general, these distributions are confirmed by the observations on plankton species composition, done by other participants. In the Scotia Sea heavily calcified coccolithophorids and diatoms occurred throughout the season, while in the Confluence area heavily calcified coccolithophorids were absent and a switch-over from diatom to naked flagellate dominance was observed following a krill event. In the surface waters, the lithogenic Si fraction represents on average only 4% of the total particulate Si content. However, this fraction reaches 60% below 100 m depth in the Confluence area, due mainly to the presence of a sub-surface maximum in the aluminosilicate load (particulate Al content up to 30 nmol/1), probably reflecting advection of resuspended shelf sediments. Subsurface Ba/barite concentrations are highest in the Scotia Sea (280 pmol/1) and decrease through the Scotia Front to reach values of 100 pmol/1 and less in the Confluence area, the marginal ice zone and the closed pack ice zone.

Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alder V, Cuzin-Roudy J, Fransz G, Granelli E, Larsen J, Rabbani M, Thomsen H (1989) Macro- and micrograzing effects on phytoplankton communities, in: The expedition Antarktis VII/03 (EPOS LEG 2) of RV “Polarstern” in 1988/89. In: Hempel I, Schalk PH, Smetacek V (eds) Ber Polarforsch 65:123–130

    Google Scholar 

  • Bathmann U, Fischer G, Müller PJ, Gerdes D (1991) Short-term variations in particulate matter sedimentation off Kapp Norvegia, Weddell Sea, Antarctica: relation to water mass advection, ice cover, plankton biomass and feeding activity. Polar Biol 11 : 185–195

    Article  Google Scholar 

  • Becquevort S, Mathot S, Lancelot C (1992) Structure of the microbial network in the marginal ice zone of the Weddell Sea through size distribution analysis. Polar Biol (in press)

    Google Scholar 

  • Bishop JKB (1988) The barite-opal-organic carbon association in oceanic particulate matter. Nature 332:341–343

    Article  CAS  Google Scholar 

  • Bishop JKB (1989) Regional extremes in particulate matter composition and flux: Effects on the chemistry of the ocean interior. In: Berger WH, Smetacek VS, Wefer G (eds) Wiley, pp 117–137

    Google Scholar 

  • Bjørnsen PK Kuparinen J (1991) Growth and herbivory by heterotrophic dinoflagellates in the Southern Ocean, studied by microcosm experiments. Mar Biol 109:397–405

    Article  Google Scholar 

  • Botazzi EM, Schreiber B, Bowen VT (1971) Acantharia in the Atlantic Ocean, their abundance and preservation. Limnol Oceanogr 16:677–684

    Article  Google Scholar 

  • Bowen HJM (1979) Environmental chemistry of the elements. Academic Press, London, 333 pp

    Google Scholar 

  • Buma A, Estrada M, Larsen J, Riebesell U, Schloss I, Thomsen HA (1989) Unicellular organisms studied alive using photographic and video techniques. In Hempel I, Schalk PH, Smetacek V (eds) The expedition Antarktis VII/03 (EPOS Leg 2) of RV “Polarstern” in 1988/89. Ber Polarforsch 65:102–110

    Google Scholar 

  • Cadée GC, Gonzalez H, Schnack-Schiel S (1992) Krill diet affects faecal string settling. Polar Biol (in press)

    Google Scholar 

  • Choi JW, Stoecker DK (1989) Effects of fixation on cell volume of marine planktonic protozoa. Appl Eviron Microbiol 55:1761– 1765

    CAS  Google Scholar 

  • CederlöU, Ober S, Schmidt R, Svansson A, Veth C (1989) Hydrography. In: Hempel I, Schalk PH, Smetacek V (eds) The expedition Antarktis VII/03 (EPOS LEG 2) of RV “Polarstern” in 1988/89. Ber Polarforsch 65:14–19

    Google Scholar 

  • Copin-Montegut C, Copin-Montegut G (1978) The chemistry of particulate matter from the south Indian and Antarctic oceans. Deep-Sea Res 25:911–931

    Article  CAS  Google Scholar 

  • De Baar HJW, Buma AGJ, Nolting RF, Cadée GC, Jacques G, Tréguer PJ, (1990) On iron limitation of the Southern Ocean: experimental observations in the Weddell and Scotia Seas. Mar Ecol Prog Ser 65:105–122

    Article  Google Scholar 

  • Dehairs F (1979) Discrete suspended particles of barite and the barium cycle in the open ocean. Doctoral Thesis, Vrije Universiteit Brussel, 285 pp

    Google Scholar 

  • Dehairs F, Chesselet R, Jedwab J (1980) Discrete suspended particles of barite and the barium cycle in the open ocean. Earth Plan Sci Lett 49:528–550

    Article  CAS  Google Scholar 

  • Dehairs F, Goeyens L, Stroobants N, Bernard P, Goyet C, Poisson A, Chesselet R (1990) On suspended barite and the oxygen-minimum in the Southern Ocean. Global Biogeochem Cyc 4: 85–102

    Article  CAS  Google Scholar 

  • Dehairs F, Stroobants N, Goeyens L (1991) Suspended barite as a tracer of biological activity in the Southern Ocean. Mar Chem 35: 399–410

    Article  CAS  Google Scholar 

  • Duce RA (1986) The impact of atmospheric nitrogen, phosphorus, and iron species on marine biological productivity. In: Buat-Menard (ed). The role of air-sea exchange in geochemical cycling. NATO ASI Series, Ser C. Mathematical and Physical Sciences, vol 185. Reidel Publ Co, pp 497–529

    Google Scholar 

  • Eicken H, Lange MA (1989) Development and properties of sea ice in the coastal regime of the Southern Weddell sea. J Geophys Res 94:8193–8206

    Article  Google Scholar 

  • Emiliani C (1955) Mineralogical and chemical composition of the tests of certain pelagic foraminifera. Micropaleontology 1:377–380

    Article  CAS  Google Scholar 

  • EPOS-Leg-2 (1991) EPOS-Leg 2, data report. Hydrography, part 1, 2nd edn. Netherlands Institute for Marine Research, Texel

    Google Scholar 

  • Goeyens L, Sörensson F, Tréguer P, Morvan J, Panouse M, Dehairs F (1991a) Spatiotemporal variability of inorganic nitrogen stocks and uptake fluxes in the Scotia-Weddell Confluence area during November and December 1988. Mar Ecol Prog Ser 77:7–19

    Article  CAS  Google Scholar 

  • Goeyens L, Tréguer P, Lancelot C, Mathot S, Becquevort S, Morvan J, Dehairs F, Baeyens W (1991b) Ammonium regeneration in the Scotia-Weddell Confluence area during spring 1988. Mar Ecol Prog Ser (in press)

    Google Scholar 

  • Jacques G (1991) Is the concept of new production — regenerated production valid for the Southern Ocean? Mar Chem 35: 273–286

    Article  Google Scholar 

  • Jacques G, Panouse M (1989) Phytoplankton, protozooplankton and bacterioplankton, In: Hempel I, Schalk PH, Smetacek V (eds) The expedition Antarktis VII/03 (EPOS LEG 2) of RV “Polarstern” in 1988/89. Ber Polarforsch 65:61–67

    Google Scholar 

  • Jacques G, Panouse M (1991) Biomass and composition of size fractionated phytoplankton in the weddell-Scotia Confluence area. Polar Biol 11:315–328

    Article  Google Scholar 

  • Krishnaswami S, Lal D, Somayajulu BLK (1976) Investigations of gram quantities of Atlantic and Pacific surface particulates. Earth Plan Sci Lett 32:403–419

    Article  CAS  Google Scholar 

  • Lambert CE, Bishop JKB, Biscaye PE, Chesselet R (1984) Particulate aluminium, iron and manganese at the deep Atlantic boundary layer. Earth Plan Sci Lett 70:237–348

    Article  CAS  Google Scholar 

  • Martin JH (1990) Glacial — interglacial CO2 change: The iron hypothesis. Paleoceanography 5:1–13

    Article  Google Scholar 

  • Martin JH, Knauer GA (1973) The elemental composition of plankton. Geochim Cosmochim Acta 37:1639–1653

    Article  CAS  Google Scholar 

  • Martin JH, Fitzwater SE, Gordon RM (1990a) Iron deficiency limits phytoplankton growth in Antarctic waters. Glob Biogeochem Cyc 4:5–12

    Article  CAS  Google Scholar 

  • Martin JH, Gordon RM, Fitzwater SE (1990b). Iron in Antarctic waters. Nature 345:156–158

    Article  CAS  Google Scholar 

  • Mclntyre A, Bé AWH (1967) Modern Coccolithophoridae of the Atlantic Ocean-I. Placoliths and cyrtoliths. Deep-Sea Res 14: 561–597

    Google Scholar 

  • Muench RD, Gunn JT, Husby DM (1990) The Weddell-Scotia Confluence in midwinter. J Geophys Res 95:18,177–18, 190

    Article  Google Scholar 

  • Nelson DM, Smith WO, Jr (1986) Phytoplankton bloom dynamics of the western Ross Sea ice edge. IL Mesoscale cycling of nitrogen and silicon. Deep-Sea Res 33:1389–1412

    Article  CAS  Google Scholar 

  • Nelson DM, Smith WO Jr, Muench RD, Gordon LI, Sullivan CW, Husby DM (1989) Particulate matter and nutrient distributions in the ice-edge zone of the Weddell Sea: relationship to hydrography during late summer. Deep-Sea Res 36:191–209

    Article  CAS  Google Scholar 

  • Nolting RF, De Baar HJW, Van Bennekom AJ (1991) Cadmium, copper and iron in the Scotia Sea, Weddell Sea and Weddell-Scotia Confluence (Antarctica). Mar Chem 35:219–244

    Article  CAS  Google Scholar 

  • Poisson A, Schauer B, Brunet C (1990) Les Rapports des campagnes à la mer, MD 53/INDIGO 3 à bord du “Marion Dufresne”, 3 janvier-27 février 1987. les Publications de la Mission de Recherche des Terres Australes et Antarctiques Francaises, No 87–01, Fasc 2, 269 pp

    Google Scholar 

  • Schloss I, Estrada M (1992) Phytoplankton composition at the Weddell-Scotia Confluence and the marginal ice zone in the Weddell Sea related to hydrographical parameters. Deep-sea Res (in press)

    Google Scholar 

  • Smetacek V, Scharek, R, Nöthig E-M (1990) Seasonal and regional variation in the pelagial and its relationship to the life history cycle of krill. In: Kerry KR, Hempell G (eds) Antarctic ecosystems, ecological change and conservations. Springer, Berlin Heidelberg, pp 103–114

    Google Scholar 

  • Stroobants N, Dehairs F, Goeyens L, Vanderheijden N, Van Grieken R (1991) Barite formation in the Southern Ocean water column. Mar Chem 35:411–422

    Article  CAS  Google Scholar 

  • Thompson G, Bowen VT (1969) Analyses of coccolith ooze from the deep Tropical Atlantic. J Mar Chem 87:32–38

    Google Scholar 

  • Thomsen HE, Larsen J (1992) Antarctic nanoplankton. Polar Biol (in press)

    Google Scholar 

  • Tréguer P, Gueneley S, Kamatani A (1988) Biogenic silica and particulate organic matter from the Indian sector of the Southern Ocean. Mar Chem 23:167–180

    Article  Google Scholar 

  • Tréguer P, Jacques G, Smetacek V (1992) Dynamics of nutrients and phytoplankton and structure of food web in the different subsystems of the Antarctic Ocean. Polar Biol (in press)

    Google Scholar 

  • Tréguer P, Nelson DM, Guenely S, Zeyons C, Morvan J, Buma A (1990) The distribution of biogenic and lithogenic silica and the composition of particulate organic matter in the Scotia Sea and the Drake Passage during autumn 1987. Deep-Sea Res 37:833–851

    Article  Google Scholar 

  • Tréguer P, Lindner L, Van Bennekom AJ, Leynaert A, Panouse M, Jacques G (1991) Production of biogenic silica in the Weddell-Scotia Seas measured by using radiotracer 32Si. Limnol Oceanogr (in press)

    Google Scholar 

  • Van Bennekom AJ, Buma AGJ, Nolting RF (1991) Dissolved aluminium in the Weddell-Scotia Confluence and effect of Al on the dissolution kinetics of biogenic silica. Mar Chem 35:423–434

    Article  Google Scholar 

  • Van Franeker JA (1989) Sea ice conditions. In: Hempel I, Schalk PH, Smetacek V (eds) The expedition Antarktis VII/03 (EPOS LEG 2) of RV “Polarstern” in 1988/89. Ber Polarforsch 65:10–13

    Google Scholar 

  • Wefer G, Fischer G, Fütterer DK, Gersonde R, Honjo S, Ostermann D (1990) Particle sedimentation and productivity in Antarctic waters of the Atlantic sector. In: Bleil U, Thiede J (eds) Geological history of the Polar oceans: Arctic versus Antarctic. Kluwer Academic Publ, pp 363–379

    Google Scholar 

  • Westerlund S, Öhman P (1991). Iron in the water column of the Weddell Sea. Mar Chem 35:199–218

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this paper

Cite this paper

Dehairs, F., Goeyens, L., Stroobants, N., Mathot, S. (1992). Elemental composition of suspended matter in the Scotia-Weddell Confluence area during spring and summer 1988 (EPOS Leg 2). In: Hempel, G. (eds) Weddell Sea Ecology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77595-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77595-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77597-0

  • Online ISBN: 978-3-642-77595-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation