A Singularity Analysis Approach to the Solutions of Duffing’s Equation

  • Conference paper
Symmetries and Singularity Structures

Part of the book series: Research Reports in Physics ((RESREPORTS))

  • 121 Accesses

Abstract

The singularity structure of Duffing’s equation in the complex t-plane is investigated analytically and numerically. A series expansion for the general solution around each singularity t* = tR+itI is given, and is subsequently used to approximate the locations of singularity “spirals” t (n)* , n = 1,2,…, around every t*. The main “chimney” patterns—on which singularities are observed to accumulate—are explained by deriving a simple expression for the distances between singularities on the “walls” of these chimneys |t*−t (1)* |∼Q−1/4exp(−tI/2), Q being the amplitude of the (periodic) driving force. Thus, singularity patterns are seen to further “condense”, as Q increases and the motion becomes globally more chaotic in real t. These results suggest that series expansions near singularities in the complex t-plane can provide useful representations of the general solution of Duffing’s equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. U. Frisch and R. Morf, Phys. Rev. A23 (5) (1981) 2673.

    ADS  Google Scholar 

  2. M. Tabor and J. Weiss, Phys. Rev. A24 (1981) 2157.

    ADS  Google Scholar 

  3. Y. F. Chang, M. Tabor and J. Weiss, J. Math. Phys. 23(4) (1982) 531; see also Y. F. Chang et al., Physica 8D (1983) 183.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. T. Bountis in Singularities and Dynamical Systems, ed. S. Pnevmatikos (North Holland, Amsterdam, 1985 ).

    Google Scholar 

  5. A. Ramani, B. Grammatieos and B. Dorizzi, J. Math. Phys. 24 (1983) 2282; see also J. Math. Phys. 25 (1984) 481.

    Article  MathSciNet  ADS  Google Scholar 

  6. T. Bountis, H. Segur and F. Vivaldi, Phys. Rev. A25 (1982) 1257.

    MathSciNet  ADS  Google Scholar 

  7. T. Bountis, A. Ramani, B. Grammatieos and B. Dorizzi, Physica 128A (1984) 268.

    Google Scholar 

  8. S. L. Ziglin, Funct. Anal. Appl. 16 (1983) 181; also Funct. Anal. Appl. 17 (1983) 6.

    Article  MATH  Google Scholar 

  9. S. L. Ziglin, Trans. Moscow Math. Soc. 1 (1982) 283.

    Google Scholar 

  10. H. Yoshida, Celestial Mech. 31 (1983) 363–379, 381–399; see also Physica 21D (1986) 18.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. H. Ito, Kodai Math. J. 8 (1985) 120.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Rod, “On an Example of Ziglin in Hamiltonian Dynamics,” Conf. Proc. of Canad. Math. Soc. Vol. 8, ( AMS, Providence, R.I., 1987 ).

    Google Scholar 

  13. T. Bountis, V. Papageorgiou and M. Bier, Physica 24D (1987) 292.

    Google Scholar 

  14. A. Ramani, B. Grammatieos and T. Bountis, “The Painleve Property and Singularity Analysis of Integrable and Non-Integrable Systems,” Phys. Rep. 180 (3) (1989) 160.

    Article  ADS  Google Scholar 

  15. M. Bier, Ph.D. Thesis, Department of Mathematics, Clarkson University, Potsdam, NY (1987).

    Google Scholar 

  16. H. T. Davis, Introduction to Nonlinear Differential and Integral Equations ( Dover, London, 1962 ).

    MATH  Google Scholar 

  17. M. Lieberman and A. Lichtenberg, Regular and Stochastic Motion ( Springer, Berlin, 1983 ).

    MATH  Google Scholar 

  18. E. T. Copson, An Introduction to the Theory of Functions of a Complex Variable (Oxford Press, 1935 ).

    Google Scholar 

  19. J. D. Fournier, G. Levine and M. Tabor, J. Phys. A: Math. Gen. 21 (1988) 33.

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bountis, T., Bier, M., Papageorgiou, V. (1990). A Singularity Analysis Approach to the Solutions of Duffing’s Equation. In: Lakshmanan, M., Daniel, M. (eds) Symmetries and Singularity Structures. Research Reports in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76046-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76046-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53092-3

  • Online ISBN: 978-3-642-76046-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation