On the Existence of a Common Cardiorespiratory Network

  • Conference paper
Cardiorespiratory and Motor Coordination

Abstract

The primary function of the respiratory system, the gills and/or lungs, is to exchange gases between the external environment and the internal milieu of the organism. The cardiovascular system assists this function by transporting blood gases — O2 from the gill/lung capillaries to the tissue capillaries and CO2 from the tissue capillaries to the gill/lung capillaries. These processes of gas exchange and gas transportation are adjusted to maintain homeostasis in varying physiological circumstances — this is the basic cardiorespiratory function.

This research was supported by the DFG and MRC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Babâk E (1921) Die funktionelle Charakterisierung des Kehlatemzentrums der Amphibien. Fischer, Jena ( Handbuch der vergleichenden Physiologie, Vol I )

    Google Scholar 

  • Bainton CR, Richter DW, Seller H, Ballantyne D, Klein JP (1985) Respiratory modulation of sympathetic activity. J Auton Nery Syst 12: 77–90

    Article  CAS  Google Scholar 

  • Ballantyne D, Richter DW (1986) The non-uniform character of inhibitory synaptic activity in expiratory bulbospinal neurones of the cat. J Physiol (Lond) 370: 433–456

    CAS  Google Scholar 

  • Barman SM, Gebber GL (1976) Basis for synchronization of sympathetic and phrenic nerve discharges. Am J Physiol 231: 1601–1607

    PubMed  CAS  Google Scholar 

  • Czyzyk MF, Fedorko L, Trzebski A (1987) Pattern of the respiratory modulation of the sympathetic activity is species dependent: synchronization of the sympathetic outflow over the respiratory cycle in the rat. In: Cinello J, Cateresu FR, Renaud LP, Polosa C (eds) Organization of the autonomic nervous system: central and peripheral mechanisms. Liss, New York, pp 143–152

    Google Scholar 

  • Euler C von (1986) Brain stem mechanisms for generation and control of breathing pattern. In: Fishman AP, Cherniack NS, Widdicombe JG, Geiger SR (eds) The respiratory system, American Physiological Society, Bethesda, pp 1–67 (Handbook of physiology, sect I II )

    Google Scholar 

  • Feldman JL (1986) Neurophysiology of breathing in mammals. In: Bloom FE (ed) The nervous system, American Physiological Society, Bethesda, pp 463–524 (Handbook of physiology, sect I )

    Google Scholar 

  • Feldman JL, Ellenberger HH (1988) Central coordination of respiratory and cardiovascular control in mammals. Annu Rev Physiol 50: 593–606

    Article  PubMed  CAS  Google Scholar 

  • Gilbey MP, Jordan D, Richter DW, Spyer KM (1984) Synaptic mechanisms involved in the inspiratory modulation of vagal cardio-inhibitory neurones in the cat. J Physiol (Lond) 356: 65–78

    CAS  Google Scholar 

  • Gilbey MP, Numao Y, Spyer KM (1986) Discharge patterns of cervical sympathetic preganglionic neurones related to central respiratory drive in the rat. J Physiol (Lond) 378: 253–265

    CAS  Google Scholar 

  • Harding R (1984) Function of the larynx in the fetus and newborn. Annu Rev Physiol 46: 645–659

    Article  PubMed  CAS  Google Scholar 

  • Haselton JR, Guyenet PG (1989) Central respiratory modulation of medullary sympathoexcitatory neurons in rat. Am J Physiol 256: R739–750

    PubMed  CAS  Google Scholar 

  • Hering E (1869) Über den Einfluß der Atmung auf den Kreislauf. I. Über Athembewegungen des Gefäßsystems. Sber Akad Wiss. Vienna, Math Nat Kl II Abtl 60: 829–856

    Google Scholar 

  • Heymans JF, Heymans C (1927) Sur les modifications directes et sur la régulation réflexe de l’activité du centre respiratoire de la tête isolée du chien. Arch Int Pharmacodyn 33: 273–370

    Google Scholar 

  • Ishihara M (1907) Bemerkungen über die Atmung der Fische. Zentralbl Physiol 20: 157–169

    Google Scholar 

  • Jänig W (1985) Organization of the lumbar sympathetic outflow to skeletal muscle and skin of the cat hindlimb and tail. Rev Physiol Biochem Pharmacol 102: 119–213

    Article  PubMed  Google Scholar 

  • Koepchen HP (1962) Die Blutdruckrhythmik. Steinkopff, Darmstadt

    Google Scholar 

  • Koepchen HP, Wagner P, Lux HD (1961) Über die Zusammenhänge zwischen zentraler Erregbarkeit, reflektorischem Tonus und Atemrhythmus bei der nervösen Steuerung der Herzfrequenz. Pflugers Arch 273: 443–465

    Article  CAS  Google Scholar 

  • Koepchen HP, Klüßendorf D, Sommer D (1981) Neurophysiological background of central neural cardiovascular-respiratory coordination. Basic remarks and experimental approach. J Auton Nery Syst 3: 336–368

    Google Scholar 

  • Koepchen HP, Abel HH, Klüßendorf D (1987) Brain stem generation of specific and nonspecific rhythms. In: Cinello J, Caleresu FR, Renaud LP, Polosa C (eds) Organization of the autonomic nervous system: central and peripheral mechanisms. Liss, New York, pp 179–188

    Google Scholar 

  • Numao Y, Koshiya N, Gilbey MP, Spyer KM (1987) Central respiratory drive-related activity in sympathetic nerves of the rat: the regional differences. Neurosci Lett 81: 279–284

    Article  PubMed  CAS  Google Scholar 

  • Koepchen HP, Abel HH, Klüßendorf D (1987) Brain stem generation of specific and nonspecific rhythms. In: Cinello J, Caleresu FR, Renaud LP, Polosa C (eds) Organization of the autonomic nervous system: central and peripheral mechanisms. Liss, New York, pp 179–188

    Google Scholar 

  • McAllen RM (1987) Central respiratory modulation of subretrofacial bulbospinal neurons in the cat. J Physiol (Lond) 388: 533–545

    CAS  Google Scholar 

  • Numao Y, Koshiya N, Gilbey MP, Spyer KM (1987) Central respiratory drive-related activity in sympathetic nerves of the rat: the regional differences. Neurosci Lett 81: 279–284

    Article  PubMed  CAS  Google Scholar 

  • Polosa C, Berber U, Schondorf R (1980) Central mechanisms of interaction between sympathetic preganglionic neurones and the respiratory oscillator. In: Koepchen HP, Hilton SM, Trzebski A (eds) Central interaction between respiratory and cardiovascular control systems. Springer, Berlin Heidelberg New York, pp 137–143

    Chapter  Google Scholar 

  • Remmers JE, Bartlett D Jr (1977) Reflex control of expiratory airflow and duration. J Appl Physiol (Respirat Environ Exercise Physiol) 42: 80–87

    CAS  Google Scholar 

  • Remmers JE, Richter DW, Ballantyne D, Bainton CR, Klein JP (1986) Reflex prolongation of the stage I of expiration. Pflugers Arch 407: 190–198

    Article  PubMed  CAS  Google Scholar 

  • Richter DW (1982) Generation and maintenance of the respiratory rhythm. J Exp Biol 100: 93–107

    Google Scholar 

  • Richter DW, Seller H (1975) Baroreceptor effects on medullary respiratory neurones of the cat. Brain Res 86: 168–171

    Article  PubMed  CAS  Google Scholar 

  • Richter DW, Ballantyne D, Remmers JE (1986) Respiratory rhythm generation: a model. NIPS 1: 109–112

    Google Scholar 

  • Richter DW, Ballantyne D, Remmers JE (1987) The differential organization of medullary post-inspiratory activities. Pflugers Arch 410: 420–427

    Article  PubMed  CAS  Google Scholar 

  • Richter DW, Spyer KM (1980) Cardio-respiratory control. In: Loewy AD, Spyer KM (eds) Central regulation of autonomic functions. Oxford University Press, New York, pp. 189–207

    Google Scholar 

  • Schweitzer A (1937) Die Irradiation autonomer Reflexe. Karger, Basel

    Google Scholar 

  • Seller H, Langhorst P, Richter D, Koepchen HP (1968) Über die Abhängigkeit der pressoreceptorischen Hemmung des Sympathicus von der Atemphase und ihre Auswirkung in der Vasomotorik. Pflugers Arch 302: 300–314

    Article  PubMed  CAS  Google Scholar 

  • Spyer KM (1984) Central control of the cardiovascular system. In: Porter PF (ed) Recent advances in physiology. Raven, Edinburgh, pp 163–200

    Google Scholar 

  • Trzebski A, Kubin L (1981) Is the central inspiratory activity responsible for pCO2 dependent drive of the sympathetic discharge. J Auton Nerv Syst 3: 401–420

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Richter, D.W., Spyer, K.M., Gilbey, M.P., Lawson, E.E., Bainton, C.R., Wilhelm, Z. (1991). On the Existence of a Common Cardiorespiratory Network. In: Koepchen, HP., Huopaniemi, T. (eds) Cardiorespiratory and Motor Coordination. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75507-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75507-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52279-9

  • Online ISBN: 978-3-642-75507-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation