Particulate Suspensions as Contrast Media

  • Chapter
Radiocontrast Agents

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 73))

Abstract

Particulate contrast media offer exciting advantages over water-soluble media in several radiologic applications. A truly vascular contrast medium which does not diffuse into the extravascular spaces and is not hyperosmolar would be extremely useful as an intravenous angiographic medium for measuring blood flow and vascular volumes with the novel technologies such as digital fluoroscopy and dynamic computed tomography (CT) scanning. A medium which is less viscous than Ethiodol and does not embolize in the lungs would be advantageous in lymphography. The difference in impedance between solids and liquids means particulate media could potentially be useful as ultrasound contrast media (CM). Paramagnetic compounds in the form of a particulate suspension may be helpful as nuclear magnetic resonance (NMR) contrast media.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Thomas SF, Henry GW, Kaplan HS (1953) Hepatolienography: past, present, and future. Radiology 57:669–683

    Google Scholar 

  2. Fischer HW (1977) Improvement in radiographic contrast media through the development of colloidal or particulate media: an analysis. J Theor Biol 67:653–670

    PubMed  CAS  Google Scholar 

  3. Swarm RL (1971) Colloidal thorium dioxide. In: International encyclopedia of pharmacology and therapeutics. Radioactive agents, section 76. Pergamon

    Google Scholar 

  4. Carrigan RH (1967) Manufacture of thorium dioxide suspension (Thorotrast). Ann NY Acad Sci 145:530–531

    PubMed  CAS  Google Scholar 

  5. Thomas SF (1962) Hepatolienography ten years later. Radiology 78:435–438

    PubMed  CAS  Google Scholar 

  6. Radt P (1929) Eine Methode zur röntgenologischen Kontrastdarstellung von Milz und Leber. Klin Wochenschr 8:2128–2129

    Google Scholar 

  7. Oka M (1929) Eine neue Methode zur röntgenologischen Darstellung der Milz. Fortsch Geb Röntgenstr 40:497–501

    Google Scholar 

  8. Fischer HW (1957) Colloidal stannic oxide: animal studies on a new hepatolienographic agent. Radiology 68:488–498

    PubMed  CAS  Google Scholar 

  9. Fischer HW, Zimmerman GR (1969) Long retention of stannic oxide: lack of tissue reaction in laboratory animals. Arch Pathol 88:259–264

    PubMed  CAS  Google Scholar 

  10. Gianturco C, Ruskin B, Steggerda FR, Takeochi T (1972) A feasibility study of splenohepatography with tantalum metal and tantalum pentoxide. Radiology 102:195–196

    PubMed  CAS  Google Scholar 

  11. Teplick GJ, Berk JE, Safrin L (1957) Experimental hepatosplenography using barium sulfate. Exp Hepatosplenography 78:328–332

    CAS  Google Scholar 

  12. Seltzer SE, Adams DF, Davis MA, Hessel SJ, Hurlburt A, Havron A, Hollenberg NK, Abrams HL (1979) Development of selective hepatic contrast agents for CT scanning. Invest Radiol 14:356–357

    Google Scholar 

  13. Violante MR, Fischer HW, Mahoney JA (1980) Particulate contrast media. Invest Radiol 15:5329–5334

    Google Scholar 

  14. Fischer HW, Barbaric ZL, Violante MR, Stein G, Shapiro ME (1977) Iothalamate ethyl ester as hepatolienographic agent. Invest Radiol 12:96–100

    PubMed  CAS  Google Scholar 

  15. Violante MR, Shapiro ME, Fischer HW (1979) Protein binding to iothalamate ethyl ester. Invest Radiol 14:177–179

    PubMed  CAS  Google Scholar 

  16. Felder E (1977) Radiopaque esters of tetra-dodoterephthalic acid. US patent 4,044,048

    Google Scholar 

  17. Matthews JL (1955) An evaluation of various avenues available for visualization of the liver with X-rays. Doctoral thesis, University Illinois, Department of Physiology

    Google Scholar 

  18. Drummel RJ, Madden JD, Thomas SF (1959) New iodine compounds for hepatolienography. J Am Pharm Assoc Sci Ed 48:181–182

    Google Scholar 

  19. Zimmon DS, Hadgraft JW (1965) A new method for hepatolienography. Radiology 84:477–482

    PubMed  CAS  Google Scholar 

  20. Wiedeman MP (1963) Dimensions of blood vessels from distributing artery to collecting vein. CircRes 12:375–378

    CAS  Google Scholar 

  21. Gendreau RM, Jakobsen RJ (1979) Blood-surface interactions: fourier transform infrared studies of protein surface adsorption from flowing blood plasma and serum. J Biomed Mater Res 13:893–906

    PubMed  CAS  Google Scholar 

  22. Baier RE (1975) Applied chemistry at protein interfaces. Adv Chem Ser 145:1

    CAS  Google Scholar 

  23. Leininger RI (1972) Polymers as surgical implants. CRC Crit Rev Bioeng 1:333–381

    PubMed  CAS  Google Scholar 

  24. McIntire LV (1980) Dynamic materials testing: biological and clinical applications in network-forming systems. Annu Rev Fluid Mech 12:159–179

    CAS  Google Scholar 

  25. Pearsall NN, Weiser RS (1970) The macrophage. Lea and Febinger, Philadelphia, pp 62–63

    Google Scholar 

  26. Van Aken WG, Vreeken J (1970) The clearance mechanism of the reticuloendothelial system. In: Van Furth R, Davis FA (eds) Mononuclear phagocytes. Blackwell, Philadelphia, pp 382–396

    Google Scholar 

  27. Remuzzi G, Mecca G, Marchesi D et al. (1979) Platelet hyperaggregability and the nephrotic syndrome. Thromb Res 16:345–354

    PubMed  CAS  Google Scholar 

  28. Grosse-Siestrup G, Olsen DB, Lemm W (1978) A long-term ex vivo shunt for blood compatibility of biomaterials. Trans Soc Biomater 2:102

    Google Scholar 

  29. Lee RG, Kim SW (1974) Adsorption of proteins onto hydrophobic polymer surfaces: adsorption isotherms and genetics. J Biomed Mater Res 8:251

    PubMed  CAS  Google Scholar 

  30. Cooper EH, Ward AM (1979) Acute phase reactant proteins as aids to monitoring disease. Invest Cell Pathol 2:293–301

    PubMed  CAS  Google Scholar 

  31. Watkins RW, Robertson CR (1977) A total internal-reflection technique for the examination of protein adsorption. J Biomed Mater Res 11:215–238

    Google Scholar 

  32. Davis BD (1946) Physiological significance of the binding of molecules by plasma proteins. Am Sci 34:611–618

    PubMed  CAS  Google Scholar 

  33. Tait J, Elvidge AR (1926) Effect upon platelets and on blood coagulation of injecting foreign particles into the blood stream. J Physiol 62:129–144

    PubMed  CAS  Google Scholar 

  34. Biozzi G (1951) Quantitative study of the granulopectic activity of the reticuloendothelial system by intravenous injection of India ink in various animal species. V. Relations between the modifications of blood coagulation in vitro under the effect of intravenous injections of increased doses of India ink and its distribution in the organism. Am Inst Pasteur 81:164–172

    CAS  Google Scholar 

  35. Pfueller SL, Firkin BG (1978) Role of plasma proteins in the interaction of human platelets with particles. Thromb Res 12:979

    PubMed  CAS  Google Scholar 

  36. Vroman L, Adams AL, Klings M et al. (1977) Reactions of formed elements of blood with plasma proteins at interfaces. Ann NY Acad Sci 283:65

    CAS  Google Scholar 

  37. Zucker MB, Vroman L (1969) Platelet adhesion induced by fibrinogen adsorbed onto glass. Proc Soc Exp Biol Med 131:318

    PubMed  CAS  Google Scholar 

  38. Walton KW (1953) Obervations on the effects of a series of dextran sulphates of varying molecular weight on the formed elements of the blood in vitro. Br J Pharmacol 8:340–347

    CAS  Google Scholar 

  39. Walton KW (1954) Investigation of the toxicity of a series of dextran sulphates of varying molecular weight. Br J Pharmacol 9:1–14

    CAS  Google Scholar 

  40. Bell E (1953) The origin and nature of granules found in macrophages of the white mouse following intravenous injection of thorotrast. J Cell Comp Physiol 42:125–136

    CAS  Google Scholar 

  41. Violante MR, Mare K, Fischer HW (1981) Biodistribution of a particulate hepatolienographic CT contrast agent. A study of iodipamide ethyl ester in the rat. Invest Radiol 16:40–45

    PubMed  CAS  Google Scholar 

  42. Violante MR, Dean PB (1980) Improved detectability of VX 2 carcinoma in the rabbit liver with contrast enhancement in computed tomography. Radiology 134:237–239

    PubMed  CAS  Google Scholar 

  43. Alfidi RJ, Luval-Jeantet M (1976) AG 60.99: a promising contrast agent for computed tomography of the liver and spleen. Radiology 121:491

    PubMed  CAS  Google Scholar 

  44. Vermess M, Chatterji DC, Doppman JL et al. (1979) Development and experimental evaluation of a contrast medium for computed tomographic examination of the liver and spleen. J Comput Assist Tomogr 3:25–31

    PubMed  CAS  Google Scholar 

  45. Vermess M, Doppman JL, Sugarbaker P et al. (1980) Clinical trials with a new intravenous liposoluble contrast material for computed tomography of the liver and spleen. Radiology 137:217–222

    PubMed  CAS  Google Scholar 

  46. Lamarque JL, Bruel JM, Dondelinger R et al. (1979) The use of iodipids in hepatosplenic computed tomography. J Comput Assist Tomogr 3:21–24

    PubMed  CAS  Google Scholar 

  47. Spector WS (1956) (ed) Handbook of biological data. Saunders, Philadelphia, p 163

    Google Scholar 

  48. Bluin A (1979) Morphometry of liver sinusoidal cells. In: Wisse E, Knook DL (eds) Kupffer cells and other liver sinusoidal cells, 2nd ed. Elsevier, Amsterdam, pp 61–72

    Google Scholar 

  49. Beuacerraf B, Biozzi G, Halpern BN et al. (1957) Physiology of phagocytosis of particles by the reticuloendothelial system. In: Halpern BN (ed) Physiopathology of the reticuloendothelial system. Thomas, Springfield, pp 52–79

    Google Scholar 

  50. Saba T (1970) Physiology and physiopathology of the reticuloendothelial system. Arch Intern Med 126:1031–1052

    PubMed  CAS  Google Scholar 

  51. Dobson EL, Gofman JW, Jones HB, Kelly LS, Walker LA (1949) Studies with colloids containing radioisotopes of yttrium, zerconium, columbium, and lanthanum. II. The controlled selective localization of radioisotopes of yttrium, zerconium, and columbium in the bone marrow, liver, and spleen. J Lab Clin Med 34:305–312

    PubMed  CAS  Google Scholar 

  52. Dobson EL, Jones HB (1952) The behavior of intravenously injected particulate material. Acta Med Scand [Suppl] 273:7–71

    Google Scholar 

  53. Kabisch WT (1967) Phagocytosis of colloidal thorium dioxide and cobaltic oxide by the reticuloendothelial system of the rat. Ann NY Acad Sci 145:585–594

    PubMed  CAS  Google Scholar 

  54. Singer JM, Adlersbert L, Hoenig EM, Ende E, Tchorsch Y (1969) Radiolabeled latex particles in the investigation of phagocytosis in vivo: clearance and histological observations. J Reticuloendothel Soc 6:561–589

    PubMed  CAS  Google Scholar 

  55. Nelp WB (1970) Distribution and radiobiological behavior of colloids and macroag-gregates. In: Cloutier RJ, Edwards CL, Snyder W (eds) Medical radionuclide: radiation dose and effects. USAEC Symposium Series 20, Springfield

    Google Scholar 

  56. Drinker CK, Shaw LA (1921) Quantitative distribution of particulate material (mangenese dioxide) administered intravenously to the cat. J Exp Med 33:77–98

    PubMed  CAS  Google Scholar 

  57. Dobson EL (1957) Factors controlling phagocytosis. In: Halpern BN (ed) Physiopathology of the reticuloendothelial system. Thomas, Springfield, pp 80–114

    Google Scholar 

  58. Jones HB, Wrobel CJ, Lyons WR (1944) A method of distributing beta-radiation to the reticuloendothelial system and adjacent tissues. J Clin Invest 23:783–788

    PubMed  CAS  Google Scholar 

  59. Neukomm S, Lerch P, Jallut O (1957) Physicochemical factors governing the phagocytic function of the RES. In: Halpern BN (ed) Physiopathology of the reticuloendothelial system. Thomas, Springfield, pp 115–127

    Google Scholar 

  60. Zilversmit DB, Boyd GA, Brucker M (1952) The effect of particle size on blood clearance and tissue distribution of radioactive gold colloids. J Lab Clin Med 40:255–260

    PubMed  CAS  Google Scholar 

  61. Wilkins DJ, Myers PA (1966) Studies on the relationship between the electrophoretic properties of colloids and their blood clearance and organ distribution in the rat. Br J Exp Pathol 47:568–576

    PubMed  CAS  Google Scholar 

  62. Curtis ASG (1960) Cell contacts: some physical considerations. Am Nat 94:37–56

    Google Scholar 

  63. Steinberg MS (1958) On the chemical bonds between animal cells. A mechanism for type-specific association. Am Nat 92:65–81

    CAS  Google Scholar 

  64. Benor S, Eisenberg S, Doljanski F (1960) Electrophoretic mobilities of normal and regenerating liver cells. Nature 188:1200–1201

    Google Scholar 

  65. Benacerraf B, Halpern BN, Biozzi G, Benos SA (1954) Quantitative study of the granulopectic activity of the reticulo-endothelial system. III. The effect of cortisone and nitrogen mustard on the regenerative capacity of the RES after saturation with carbon. Br J Exp Pathol 35:97–106

    PubMed  CAS  Google Scholar 

  66. Biozzi G, Benacerraf B, Halpern BN (1953) Quantitative study of the reticulo-endothelial system. II. A study of the granulopectic activity of the RES in relation to the dose of carbon injected. Relationship between the weight of the organs and their activity. Br J Exp Pathol 34:441–457

    PubMed  CAS  Google Scholar 

  67. Halpern B (1974) Role of the reticulo-endothelial system in the clearance of macro-molecules. In: Jager JM, Houghwinke GJM, Daems WJH (eds) Liposomal therapy in lysosomal disease. Elsevier, Amsterdam, pp 111–123

    Google Scholar 

  68. Norman SJ (1974) Kinetics of phagocytosis. II. Analysis of in vivo clearance with demonstration of competitive inhibition between similar and dissimilar foreign particles. Lab Invest 31:161–169

    Google Scholar 

  69. Norman SJ (1974) Kinetics of phagocytosis. III. Two colloid reactions, competitive inhibition, and degree of inhibition between similar and dissimilar foreign particles. Lab Invest 31:286–293

    Google Scholar 

  70. Ito M, Wagner HN, Scheffel U, Jabbour B (1963) Studies of the reticuloendothelial system. I. Measurement of the phagocytic capacity of the RES in man and dog. J Clin Invest 42:417–426

    Google Scholar 

  71. Jacques PJ (1977) Kinetics of test-particle extraction from blood plasma by liver and spleen macrophages. In: Wisse E, Knook DL (eds) Kupffer cells and other liver sinusoidal cells. Elsevier, Amsterdam

    Google Scholar 

  72. Bradfleld JWB (1977) Reticulo-endothelial blockade: a reassessment. In: Wisse E, Knook DL (eds) Kupffer cells and other liver sinusoidal cells. Elsevier, Amsterdam, pp 365–372

    Google Scholar 

  73. Dobson EL, Kelly LS, Finney CR (1967) Kinetics of the phagocytosis of repeated injections of colloidal carbon: blockade, a latent period of stimulation? A question of timing and dose. Adv Exp Med Biol 1:63–73

    Google Scholar 

  74. Murray IM, Katz M (1955) Factors affecting the rate of removal of gelatin-stabilized radiogold colloid from the blood. J Lab Clin Med 46:263–269

    PubMed  CAS  Google Scholar 

  75. Keith WS, Briggs DR (1930) Roentgen ray visualization of spleen following injection of emulsions of halogenated oils. Proc Soc Exp Biol Med 27:538–540

    Google Scholar 

  76. Beckermann F, Popken C (1938) Kontrastdarstellung der Leber und Milz im Röntgenbild mit Jodsolen. Fortschr Röntgenstr 58:519–535

    Google Scholar 

  77. Derkwitz R (1938) Kolloidgestaltung und gezielte intravenöse Injection. Fortschr Röntgenstr 58:472–485

    Google Scholar 

  78. Olsson O (1944) On hepatosplenography with jodsol. Acta Radiol 22:749–761

    Google Scholar 

  79. Berger SM (1956) Angiopac, ethyl di-iodostearate as a hepatosplenographic agent. Preliminary report. AJR 76:39–46

    CAS  Google Scholar 

  80. Teplick JG, Haskin ME, Skelley J et al. (1964) Experimental studies with a new radiopaque emulsion. Radiology 82:478–485

    PubMed  CAS  Google Scholar 

  81. Vermess M, Adamson RH, Doppman JL et al. (1974) Intra-arterial hepatography: experimental evalulation of a new contrast agent. Radiology 110:705–707

    PubMed  CAS  Google Scholar 

  82. Laval-Jeantet M, Lamarque JL, Dreux P et al. (1976) Hepatosplenography by intravenous injection of a new iodized oily emulsion. Acta Radiol [Diagn] 17:49–60

    CAS  Google Scholar 

  83. Baitaxe HA, Katzen B, Alonzo DR et al. (1976) Hepatomography: an experimental technique using an emulsifier. A preliminary study. Radiology 119:27–30

    Google Scholar 

  84. Vermess M, Adamson RH, Doppman JL et al. (1977) Computed tomographic demonstration of hepatic tumor with the aid of intravenous iodinated fat emulsion. An experimental study. Radiology 125:711–715

    PubMed  CAS  Google Scholar 

  85. Grimes G, Vermess M, Gallelli JF et al. (1979) Formulation and evaluation of ethiodized oil emulsion for intravenous hepatography. J Pharm Sci 68:52–56

    PubMed  CAS  Google Scholar 

  86. Vermess M, Inscoe S, Sugarbaker P (1980) Use of liposoluble contrast material to separate left renal and splenic parenchyma on computed tomography. J Comput Assist Tomogr 4:540–542

    PubMed  CAS  Google Scholar 

  87. Wretlind A (1964) The pharmacological basis for the use of fat emulsions in intravenous nutrition. Acta Chir Scand [Suppl] 325:31–42

    CAS  Google Scholar 

  88. McCready R (1972) Scintigraphic studies of space-occupying liver disease. Nuklearmedizin 42:108–127

    Google Scholar 

  89. Long DM, Liu M-S, Szanto PS, Alrenga DP, Patel MM, Rios MV, Nyhus LM (1972) Efficacy and toxicity studies with radiopaque perfluorocarbon. Radiology 105:323–332

    PubMed  CAS  Google Scholar 

  90. Long DM, Liu M-S, Szanto PS, Alrenga P (1972) Initial observations with an X-ray contrast agent — radiopaque perfluorocarbon. Rev Surg 29:71–76

    PubMed  CAS  Google Scholar 

  91. Liu MS, Long DM (1976) Biological disposition of perfluoroctylbromide: tracheal administration in alveolography and bronchography. Invest Radiol 11: 479–485

    PubMed  CAS  Google Scholar 

  92. Liu MS, Long DM (1977) Perfluoroctylbromide as a diagnostic contrast medium in gastroenterolography. Radiology 122:71–76

    PubMed  CAS  Google Scholar 

  93. Enzman D, Young SW (1979) Applications of perfluorinated compounds as contrast agents in computed tomography. J Comput Assist Tomogr 3(4):622–626

    Google Scholar 

  94. Paphadjopoulos D, Wilson T, Taber R (1980) Liposomes as vehicles for cellular incorporation of biologically active macromolecules. In Vitro 16(l):49–54

    CAS  Google Scholar 

  95. Gregoriadis G, Ryman BE (1972) Lysosomal localization of fructofuranosidase-containing liposomes injected into rats. Biochem J 129:123

    PubMed  CAS  Google Scholar 

  96. McDougall IR, Dunnick JF, McNamee MG, Kriss JP (1974) Distribution and fate of synthetic lipid vesicles in the mouse: a combined radionuclide and spin label study. Proc Natl Acad Sci USW 71:3487

    CAS  Google Scholar 

  97. Rahman Y, Wright BJ (1975) Liposomes containing chelating agents. J Cell Biol 65:112

    PubMed  CAS  Google Scholar 

  98. Rahman Y, Rosenthal MW, Cerny EA, Moretti ES (1974) Preparation and prolonged tissue retention of liposome-encapsulated chelating agents. J Lab Clin Med 83:640

    PubMed  CAS  Google Scholar 

  99. Rahman Y, Cerny EA, Tollaksen SL, Wright BJ, Nance SL, Thomson JF (1974) Liposome-encapsulated actinomycin D: potential in cancer chemotherapy. Proc Soc Exp Biol Med 146:1173

    PubMed  CAS  Google Scholar 

  100. Straub SX, Garry RF, Magee WE (1974) Interferon induction by poly (I): poly (C) enclosed in phospholipid particles. Infect Immun 10:783

    PubMed  CAS  Google Scholar 

  101. Havron A, Seltzer SE, Davis MA (1980) Liposomes containing diatrizoate: a promising new contrast agent for splenic computed tomography (CT). 66th RSNA, Dallas, Texas, Nov 1980

    Google Scholar 

  102. Felder E, Pitre D, Tirone P, Zingales MF (1978) Radiopaque contrast media. XLV experimental lymphography with crystal suspensions. Farmaco 33:302–314

    CAS  Google Scholar 

  103. Chiappa S, Campani R, Felder E, Ferrari D, Tirone P (1979) Experimental lymphography by intratissue injection of a crystal suspension. In: Malek P, Bartos V, Werssleder H, Witte MH (eds) Proceedings of the VIth international congress, Prague 1977. Thieme, Stuttgart, pp 359–362

    Google Scholar 

  104. Gold WM, Yonker J, Anderson S, Nadel JA (1965) Pulmonary function abnormalities after lymphangiography. N Engl J Med 273:519

    PubMed  CAS  Google Scholar 

  105. Johansson S, Sternby NH, Theander G, Wehlin L (1966) Iodinated oil emulsion for lymphography. Acta Radiol 4:690

    CAS  Google Scholar 

  106. Ansell G (1970) Adverse reactions to contrast agents: scope of problem. Invest Radiol 5:374–384

    PubMed  CAS  Google Scholar 

  107. Shehadi WH (1975) Adverse reactions to intravascularly administered contrast media: a comprehensive study based on a prospective survey. AJR 124:145–152

    CAS  Google Scholar 

  108. Bjork L, Erikson J, Ingleman B (1969) Clinical experience with a new type of contrast medium in carotid arteriography. AJR 107:637–640

    CAS  Google Scholar 

  109. Hilal SK (1970) Trends in preparation of new angiographic contrast media with special emphasis on polymeric derivatives. Invest Radiol 5:458–468

    PubMed  CAS  Google Scholar 

  110. Almen T, Wiedeman MP (1968) Application of monomers and polymers to the external surface of the vasculature: effects on microcirculation in the bat wing. Invest Radiol 3:408–413

    PubMed  CAS  Google Scholar 

  111. Dean PB, Kivisaari L, Kormano M (1978) The diagnostic potential of contrast enhancement pharmacokinetics. Invest Radiol 13:533–540

    PubMed  CAS  Google Scholar 

  112. Newhouse JH (1977) Fluid compartment distribution of intravenous iothalamate in the dog. Invest Radiol 12:364–367

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Violante, M.R., Fischer, H.W. (1984). Particulate Suspensions as Contrast Media. In: Sovak, M. (eds) Radiocontrast Agents. Handbook of Experimental Pharmacology, vol 73. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69515-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69515-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69517-9

  • Online ISBN: 978-3-642-69515-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation