Rapid Action of Phytochrome in Photomorphogenesis

  • Chapter
Photomorphogenesis

Part of the book series: Encyclopedia of Plant Physiology ((PLANT,volume 16))

Abstract

The kinetics of phytochrome-mediated responses can be a powerful analytical tool in the quest to elucidate this photoreceptor’s molecular mechanism of action. Clearly those responses most rapidly detectable upon photoconversion are the ones most likely to be closest in sequence to the primary action of the pigment. The observation that several rapid phytochrome-mediated responses appeared to involve changes in membrane properties led Hendricks and Borthwick (1967) to propose the “membrane hypothesis” of phytochrome action. In its most explicit formulation, this hypothesis proposes that phytochrome modifies the functional properties of one or more cellular membranes as its primary action upon photoconversion, and that this modification results from the direct physical interaction of the pigment with the components of those membranes. All other observed alterations in cellular and molecular function are then postulated to ensue in cascade fashion from this single molecular mechanism of action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Apel K (1979) Phytochrome-induced appearance of mRNA activity for the apoprotein of the light-harvesting chlorophyll a/b protein of barley (Hordeum vulgare). Eur J Biochem 97:183–188

    Article  PubMed  CAS  Google Scholar 

  • Billet EE, Smith H (1978) Phytochrome and mung bean mitochondria. Annu Eur Symp Photomorphogenesis, Abstr p 5

    Google Scholar 

  • Blaauw-Jensen G, Blaauw OH (1976) Further evidence for the existence of two phytochrome systems from two distinct effects of far-red light on lettuce seed germination. Acta Bot Neerland 25:213–219

    Google Scholar 

  • Borochov A, Halevy AH, Shinitzky M (1976) Increase in microviscosity with ageing in protoplast plasmalemma of rose petals. Nature 263:158–159

    Article  Google Scholar 

  • Brownlee C, Kendrick RE (1977) Phytochrome and potassium uptake by mung bean hypocotyl sections. Planta 137:61–64

    Article  CAS  Google Scholar 

  • Brownlee C, Kendrick RE (1979) Ion fluxes and phytochrome protons in mung bean hypocotyl segments. I. Fluxes of potassium. Plant Physiol 64:206–210

    Article  PubMed  CAS  Google Scholar 

  • Brownlee C, Roth-Bejerano N, Kendrick RE (1979) The molecular mode of phytochrome action. Sci Prog Oxf 66:217–229

    CAS  Google Scholar 

  • Bürcky K, Kauss H (1974) Veränderung im Gehalt an ATP and ADP in Wurzelspitzen der Mungobohne nach Hellrotbelichtung. Z Pflanzenphysiol 73:184–186

    Google Scholar 

  • Butler WL (1972) Photochemical properties of phytochrome in vitro. In: Mitrakos K, Shropshire W Jr (eds) Phytochrome. Academic Press, London New York, pp 185–192

    Google Scholar 

  • Carceller MS, Sánchez RA (1972) The influence of phytochrome in the water exchange of epidermal cells of Taraxacum officinale. Experientia 28:364

    Article  CAS  Google Scholar 

  • Caubergs R, DeGreef JA (1975) Studies on hook-opening in Phaseolus vulgaris L. by selective R/FR pretreatments of embryonic axis and primary leaves. Photochem Photobiol 22:139–144

    Article  PubMed  CAS  Google Scholar 

  • Cedei TE, Roux SJ (1980) Modulation of a mitochondrial function by oat phytochrome in vitro. Plant Physiol 66:704–709

    Article  Google Scholar 

  • Cherry RJ (1975) Protein mobility in membranes. FEBS Lett 55:1–7

    Article  PubMed  CAS  Google Scholar 

  • Cooke RJ, Kendrick RE (1976) Phytochrome-controlled gibberellin metabolism in etio- plast envelopes. Planta 131:303–307

    Article  CAS  Google Scholar 

  • Cooke RJ, Saunders PF (1975) Phytochrome mediated changes in extractable gibberellin activity in a cell-free system from etiolated wheat leaves. Planta 123:299–302

    Article  Google Scholar 

  • Cooke RJ, Saunders PF, Kendrick RE (1975) Red-light-induced production of gibberellin-like substances in homogenates of etiolated wheat leaves and in suspensions of intact etioplasts. Planta 124:319–328

    Article  CAS  Google Scholar 

  • Cordonnier MM, Mathis P, Pratt LH (1981) Phototransformation kinetics of undegraded oat and pea phytochrome initiated by laser flash excitation of the red-absorbing form. Photochem Photobiol 34:733–740

    CAS  Google Scholar 

  • Cosgrove DJ (1981) Rapid suppression of growth by blue light. Occurrence, time-course and general characteristics. Plant Physiol 67:584–590

    Article  PubMed  CAS  Google Scholar 

  • DeLisi C (1980) The biophysics of ligand-receptor interactions. Q Rev Biophys 13:201–230

    Article  PubMed  CAS  Google Scholar 

  • Dieter P, Marmé D (1981) Far-red light irradiation of intact corn seedlings affects mitochondrial and calmodulin-dependent microsomal Ca2+ transport. Biochem Biophys Res Commun 101:749–755

    Article  PubMed  CAS  Google Scholar 

  • Dreyer EM, Weisenseel MH (1979) Phytochrome-mediated uptake of calcium in Mougeotia cells. Planta 146:31–39

    Article  CAS  Google Scholar 

  • Drumm H, Mohr H (1974) The dose-response curve in phytochrome-mediated antho- cyanin synthesis in the mustard seedling. Photochem Photobiol 20:151–157

    Article  CAS  Google Scholar 

  • Epel BL, Butler WL, Pratt LH, Tokuyasu KT (1980) Immunofluorescence localization studies of the Pr and Pfr forms of phytochrome in the coleoptile tips of oats, corn and wheat. In: DeGreef JA (ed) Photoreceptors and plant development. Antwerpen Univ Press, Antwerpen, pp 121–133

    Google Scholar 

  • Evans A, Smith H (1976) Localization of phytochrome in etioplasts and its regulation in vitro of gibberellin levels. Proc Natl Acad Sci USA 73:138–142

    Article  PubMed  CAS  Google Scholar 

  • Fersht A (1977) Enzyme structure and mechanism. Freeman, San Francisco

    Google Scholar 

  • Fondeville JA, Borthwick HA, Hendricks SB (1966) Leaflet movement in Mimosa pudica L. indicative of phytochrome action. Planta 69:357–364

    Article  Google Scholar 

  • Fredericq H (1964) Conditions determining effects of far-red and red irradiations on flowering response of Pharbitis nil. Plant Physiol 39:812–816

    Article  PubMed  CAS  Google Scholar 

  • Friederich KE, Mohr H (1975) Adenosine 5′-triphosphate content and energy charge during photomorphogenesis of the mustard seedling Sinapis alba L. Photochem Photobiol 22:49–53

    Article  PubMed  CAS  Google Scholar 

  • Fuad N (1979) Phytochrome pelletability, phototransformation and destruction in maize coleoptiles. Ph D thesis, Australian National Univ, Canberra

    Google Scholar 

  • Gaba V, Black M (1979) Two separate photoreceptors control hypocotyl growth in green seedlings. Nature 278:51–54

    Article  Google Scholar 

  • Georgevich G, Roux SJ (1979) Ion fluxes in liposomes induced by phytochrome. Plant Physiol Suppl 63:155

    Google Scholar 

  • Girnth C, Bergfeld R, Kasemir H (1978) Phytochrome-mediated control of grana and stroma thylakoid formation in plastids of mustard cotyledons. Planta 141:191–198

    Article  CAS  Google Scholar 

  • Gold HG, Korenbrot JI (1980) Light-induced calcium release by intact retinal rods. Proc Natl Acad Sci USA 77:5557–5561

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith TH, Goldsmith MHM (1978) The interpretation of intracellular measurements of membrane potential, resistance and coupling in cells of higher plants. Planta 143:267–274

    Article  Google Scholar 

  • Graebe JE, Ropers HJ (1978) Gibberellins. In: Letham SL, Goodwin PB, Higgins TJ (eds) Phytohormones and related compounds: A comprehensive treatise Vol 1. Elsevier, Amsterdam, pp 107–203

    Google Scholar 

  • Gross J, Ayadi A, Marmé D (1979) Protochlorophyll(ide)-630 photosensitizes active Ca2+ accumulation in microsomal and mitochondrial fractions isolated from plants. Photochem Photobiol 30:615–621

    Article  CAS  Google Scholar 

  • Hale CC, Roux SJ (1980) Photoreversible calcium fluxes induced by phytochrome in oat coleoptile cells. Plant Physiol 65:658–662

    Article  PubMed  CAS  Google Scholar 

  • Hamdorf K, Kirschfeld K (1980) Reversible events in the transduction process of photoreceptors. Nature 283:859–860

    Article  PubMed  CAS  Google Scholar 

  • Haupt W (1959) Die Chloroplastendrehung bei Mougeotia. I. Über den quantitativen und qualitativen Lichtbedarf der Schwachlichtbewegung. Planta 53:484–501

    Article  CAS  Google Scholar 

  • Haupt W, Bretz N (1976) Short-term reactions of phytochrome in Mougeotia. Planta 128:1–3

    Article  Google Scholar 

  • Haupt W, Feinleib ME (1979) Introduction. In: Haupt W, Feinleib ME (eds) Physiology of movements. Encyclopedia of plant physiology new ser Vol 7. Springer, Berlin Heidelberg New York, pp 1–9

    Google Scholar 

  • Haupt W, Scheuerlein W (1977) Short-term phytochrome response in seed germination. Z Pflanzenphysiol 85:445–450

    CAS  Google Scholar 

  • Haupt W, Übel H (1975) Zum Mechanismus der Phytochromwirkung bei der Chloro- plastbewegung von Mougeotia. Z Pflanzenphysiol 75:165–171

    CAS  Google Scholar 

  • Haupt W, Weisenseel MH (1976) Physiological evidence and some thoughts on localized responses, intracellular localization and action of phytochrome. In: Smith H (ed) Light and plant development. Butterworth, London

    Google Scholar 

  • Haupt W, Hupfer B, Kraml M (1980) Induction of chloroplast movement in Mougeotia with light flashes: spectral sensitivity and action dichroism. Z Pflanzenphysiol 96:331–342

    Google Scholar 

  • Hendricks SB, Borthwick HA (1967) The function of phytochrome in regulation of plant growth. Proc Natl Acad Sci USA 58:2125–2130

    Article  PubMed  CAS  Google Scholar 

  • Hendricks SB, Taylorson RB (1978) Dependence of phytochrome action in seeds on membrane organization. Plant Physiol 61:17–19

    Article  PubMed  CAS  Google Scholar 

  • Herrmann TR, Rayfield GW (1978) The electrical response to light of bacteriorhodopsm in planar membranes. Biophys J 21:111–125

    Article  PubMed  CAS  Google Scholar 

  • Hilton JR, Smith H (1980) The presence of phytochrome in purified barley etioplasts and its in vitro regulation of biologically active gibberellin levels in etioplasts. Planta 148:312–318

    Article  CAS  Google Scholar 

  • Hopkins DW, Briggs WR (1973) Phytochrome and NAD kinase: A re-examination. Plant Physiol Suppl 51:52

    Google Scholar 

  • Hubbell WL, Bownds MD (1979) Visual transduction in vertebrate photoreceptors. Annu Rev Neurosci 2:17–34

    Article  PubMed  CAS  Google Scholar 

  • Jabben M, Mohr H (1975) Stimulation of the Shibata shift by phytochrome in cotyledons of the mustard seedling Sinapis alba L. Photochem Photobiol 22:55–58

    Article  PubMed  CAS  Google Scholar 

  • Jaffe MJ (1968) Phytochrome-mediated bioelectric potentials in mung bean seedlings. Science 162:1016

    Article  PubMed  CAS  Google Scholar 

  • Jaffe MJ (1976) Phytochrome-controlled acetylcholine synthesis at the endoplasmic reticulum. In: Smith H (ed) Light and plant development. Butterworth, London

    Google Scholar 

  • Johnson CB (1976) Rapid activation by phytochrome of nitrate reductase in the cotyledons of Sinapis alba L. Planta 128:127–131

    Article  CAS  Google Scholar 

  • Johnson CB, Tasker R (1979) A scheme to account quantitatively for the action of phytochrome in etiolated and light-grown plants. Plant Cell Environ 2:259–265

    Article  Google Scholar 

  • Johnson CB, Whitelam GC (1982) Phytochrome action in light-grown plants: The control of nitrate reductase as a model response. Phtotochem Photobiol 35:251–254

    Article  CAS  Google Scholar 

  • Jose AM (1977) Phytochrome modulation of ATPase activity in a membrane fraction from Phaseolus. Planta 137:203–206

    Article  CAS  Google Scholar 

  • Jose AM, Schäfer E (1979) Red/far-red modulation in vitro of enzyme activity in a membrane fraction from Phaseolus aureus. Planta 146:75–81

    Article  CAS  Google Scholar 

  • Kang BG, Zeevaart JAD (1968) An alternative explanation for the transmissible light effect in wheat leaf sections. Annu Rep MSU/AEC Plant Res Lab Mich State Univ

    Google Scholar 

  • Kasemir H, Mohr H (1981) The involvement of phytochrome in controlling chlorophyll and 5-aminolevulinate formation in a gymnosperm seedling (Pinus sylvestris). Planta 152:369–373

    Article  CAS  Google Scholar 

  • Kass LB, Pratt LH (1978) Immunocytochemical assay of the time-course of phytochrome sequestering. Plant Physiol Suppl 61:13

    Article  Google Scholar 

  • Kendrick RE, Spruit CJP (1973) Phytochrome intermediates in vivo. III. Kinetic analysis of intermediate reactions at low temperature. Photochem Photobiol 18:153–159

    Article  CAS  Google Scholar 

  • Kirshner RL, White JM, Pike CS (1975) Control of bean bud ATP levels by regulatory molecules and phytochrome. Physiol Plant 34:373–377

    Article  CAS  Google Scholar 

  • Klee CB, Crouch TH, Richman PG (1980) Calmodulin. Annu Rev Biochem 49:489–515

    Article  PubMed  CAS  Google Scholar 

  • Kraml M (1980) Photoconversion of phytochrome by short red flashes in Mougeotia and Avena. In: DeGreef JA (ed), Photoreceptors and plant development. Antwerpen Univ Press, Antwerpen

    Google Scholar 

  • Kraml M, Haupt W (1981) Phytochrome-controlled chloroplast orientation in Mougeotia: Action dichroism in double-flash experiments. Plant Sci Lett 21:145–150

    Article  CAS  Google Scholar 

  • Leung DWM, Bewley JD (1981) Immediate phytochrome action in inducing α-galactosi- dase in lettuce seeds. Nature 289:587–588

    Article  Google Scholar 

  • MacKenzie JM, Briggs WR, Pratt LH (1978) Intracellular phytochrome distribution as a function of its molecular form and of its destruction. Am J Bot 65:671–676

    Article  CAS  Google Scholar 

  • Manabe K, Furuya M (1973) A rapid phytochrome-dependent reduction of nicotinamide adenine dinucleotide phosphate in particle fraction from etiolated bean hypocotyl. Plant Physiol 51:982–983

    Article  PubMed  CAS  Google Scholar 

  • Mandoli DF, Briggs WR (1982) The photoreceptive sites and the function of tissue light pi** in photomorphogenesis of etiolated oat seedlings. Plant Cell Environ 5:137–145

    Google Scholar 

  • Marmé D (1977) Phytochrome: Membranes as possible sites of primary action. Annu Rev Plant Physiol 28:173–198

    Article  Google Scholar 

  • Meijer G (1968) Rapid growth inhibition of gherkin hypocotyls in blue light. Acta Bot Neerl 17:9–14

    Google Scholar 

  • Milgrom E (1981) Activation of steroid-receptor complexes. In: Litwack G (ed) Biochemical actions of hormones Voi 8. Academic Press, London New York

    Google Scholar 

  • Mohr H (1966) Differential gene activation as a mode of action of phytochrome 730. Photochem Photobiol 5:469–483

    Article  CAS  Google Scholar 

  • Mohr H (1972) Lectures on photomorphogenesis. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Mohr H (1974) Advances in phytochrome research. Photochem Photobiol 20:542–546

    Article  Google Scholar 

  • Morgan DC, Smith H (1978) Simulated sunflecks have large rapid effects on plant stem extension. Nature 273:534–536

    Article  Google Scholar 

  • Morris JG (1968) A biologist’s physical chemistry. Arnold, London

    Google Scholar 

  • Naunović G, Nesković M (1979) Rapid responses to light and gibberellic acid in etiolated pea stems. Photochem Photobiol 29:1173–1175

    Article  Google Scholar 

  • Newman I (1974) Electric responses of oats to phytochrome transformation. In: Bieleski RL, Ferguson AR, Cresswell MM (eds) Mechanisms of regulation of plant growth. Bull 12, Soc NZ, Wellington

    Google Scholar 

  • Newman I (1981) Rapid electric responses of oats to phytochrome show membrane processes unrelated to pelletability. Plant Physiol 68:1494–1499

    Article  PubMed  CAS  Google Scholar 

  • Newman IA, Briggs WR (1972) Phytochrome-mediated electric potential changes in oat seedings. Plant Physiol 50:687–693

    Article  PubMed  CAS  Google Scholar 

  • Newman IA, Sullivan JK (1976) Auxin transport in oats: A model for the electric changes. In: Wardlaw IF, Passioura JB (eds) Transport and transfer processes in plants. Academic Press, London New York

    Google Scholar 

  • Nobel PS (1974) Biophysical plant physiology. Freeman, San Francisco

    Google Scholar 

  • Oelze-Karow H, Mohr H (1973) Quantitative correlation between spectrophotometric phytochrome assay and physiological response. Photochem Photobiol 18:319–330

    Article  CAS  Google Scholar 

  • Oelze-Karow H, Mohr H (1974) Interorgan correlation in a phytochrome-mediated response in the mustard seedling. Photochem Photobiol 20:127–131

    Article  CAS  Google Scholar 

  • Oelze-Karow H, Mohr H (1980a) Studies about the effect of phytochrome on the development of the capacity of photophosphorylation and for chlorophyll synthesis in mustard seedling cotyledons. In: DeGreef JA (ed) Photoreceptors and plant development. Antwerpen Univ Press, Antwerpen, pp 253–255

    Google Scholar 

  • Oelze-Karow H, Mohr H (1980b) Two steps in initial phytochrome action on chlorophyll synthesis. In: Akoyunoglou G (ed) Photosynthesis Vol 5. Proc 5th Int Congr photosynthesis

    Google Scholar 

  • Palmiter RD, Mulvihill ER, Shepherd JH, McKnight GS (1981) Steroid hormone regulation of ovalbumin and conalbumin gene transcription. A model based upon multiple regulatory sites and intermediary proteins. J Biol Chem 256:7910–7916

    PubMed  CAS  Google Scholar 

  • Penel C, Greppin H, Boisard J (1976) In vitro photomodulation of a peroxidase activity through membrane-bound phytochrome. Plant Sci Lett 6:117–121

    Article  CAS  Google Scholar 

  • Pilet PE, Ney D (1978) Rapid, localized light effect on rooth growth in maize. Planta 144:109–110

    Article  Google Scholar 

  • Poo MM, Lam JW, Orida N (1979) Electrophoresis and diffusion in the plane of the cell membrane. Biophys J 26:1–22

    Article  PubMed  CAS  Google Scholar 

  • Pratt LH (1975) Photochemistry of high molecular weight phytochrome in vitro. Photochem Photobiol 22:33–36

    Article  PubMed  CAS  Google Scholar 

  • Pratt LH (1978) Molecular properties of phytochrome. Photochem Photobiol 27:81–105

    Article  CAS  Google Scholar 

  • Pratt LH (1979) Phytochrome: function and properties. In: Smith KC (ed) Photochemical and photobiological reviews, Vol 4, Plenum, New York London, pp 59–124

    Chapter  Google Scholar 

  • Pratt LH (1982) Phytochrome: The protein moeity. Annu Rev Plant Physiol 33:557–582

    Article  CAS  Google Scholar 

  • Pratt LH, Briggs WR (1966) Photochemical and nonphotochemical reactions of phytochrome in vivo. Plant Physiol 41:467–474

    Article  PubMed  CAS  Google Scholar 

  • Pratt LH, Coleman RA (1974) Phytochrome distribution in etiolated grass seedlings as assayed by an indirect antibody-labeling method. Am J Bot 61:195–202

    Article  CAS  Google Scholar 

  • Pratt LH, Marmé D (1976) Red light enhanced phytochrome pelletability. Plant Physiol 58:686–692

    Article  PubMed  CAS  Google Scholar 

  • Pratt LH, Shimazaki Y, Inoue Y, Furuya M (1982) Spectral analysis of phototransforma- tion intermediates in the pathway from the red-absorbing to the far-red-absorbing form of phytochrome. Photochem Photobiol 36:471–478

    Article  CAS  Google Scholar 

  • Quail PH (1976) Phytochrome. In: Bonner J, Varner JE (eds) Plant biochemistry. Academic Press, London New York

    Google Scholar 

  • Quail PH (1980) Phytochrome: The first five minutes from Pfr formation. In: Degreef JA (ed) Photoreceptors and plant development. Antwerpen Univ Press, Antwerpen

    Google Scholar 

  • Quail PH (1982) Intracellular location of phytochrome. In: Helen C, Charlier M, Montenay-Garestier TL (eds) Trends in photobiology, Plenum, New York London

    Google Scholar 

  • Quail PH, Briggs WR (1978) Irradiation-enhanced phytochrome pelletability: Requirement for phosphorylative energy in vivo. Plant Physiol 62:773–778

    Article  PubMed  CAS  Google Scholar 

  • Racusen RH (1976) Phytochrome control of electrical potentials and intercellular coupling in oat coleoptile tissue. Planta 132:25–29

    Article  CAS  Google Scholar 

  • Racusen RH, Etherton B (1975) Role of membrane-bound fixed-charge changes in phytochrome-mediated mung bean root tip adherence phenomenon. Plant Physiol 55:491–495

    Article  PubMed  CAS  Google Scholar 

  • Racusen RH, Galston AW (1980) Phytochrome modified blue-light-induced electrical changes in corn coleoptiles. Plant Physiol 66:534–535

    Article  PubMed  CAS  Google Scholar 

  • Racusen RH, Miller K (1972) Phytochrome-induced adhesion of mung bean root tips to platinum electrodes in a direct current field. Plant Physiol 49:654–655

    Article  PubMed  CAS  Google Scholar 

  • Racusen RH, Satter RL (1975) Rhythmic and phytochrome-regulated changes in transmembrane potential in Samanea pulvini. Nature 255:408–410

    Article  PubMed  CAS  Google Scholar 

  • Roux SJ, Yguerabide J (1973) Photoreversible conductance changes induced by phytochrome in model lipid membranes. Proc Natl Acad Sci USA 70:762–764

    Article  PubMed  CAS  Google Scholar 

  • Roux SJ, McEntire K, Slocum RD, Cedei TE, Hale CC (1981) Phytochrome induces photoreversible calcium fluxes in purified mitochondrial fractions from oats. Proc Natl Acad Sci USA 78:283–287

    Article  PubMed  CAS  Google Scholar 

  • Saffman PG, Delbrück M (1975) Brownian motion in biological membranes. Proc Natl Acad Sci USA 72:3111–3113

    Article  PubMed  CAS  Google Scholar 

  • Sandmeier M, Ivart J (1972) Modification du taux des nucléotides adenyliques (ATP, ADP et AMP) par un éclairement de lumière rouge-clair (660 nm). Photochem Photobiol 16:51–59

    Article  PubMed  CAS  Google Scholar 

  • Satter RL, Galston AW (1973) Leaf movements : Rosetta stone of plant behvior? Bio-science 23:407–416

    CAS  Google Scholar 

  • Scheuerlein R (1980) Short-term reactions of phytochrome: Flash-induction of seed germination in Lactuca sativa. In: Degreef JA (ed) Photoreceptors in plant development, Antwerpen Univ Press, Antwerpen, pp 375–380

    Google Scholar 

  • Schlessinger J, Schechter Y, Cuatrecasas P, Willingham MC, Pastan I (1978) Quantitative determination of the lateral diffusion coefficients of the hormone-receptor complexes of insulin and epidermal growth factor on the plasma membrane of cultured fibroblasts. Proc Natl Acad Sci USA 75:5353–5357

    Article  PubMed  CAS  Google Scholar 

  • Schmidt W, Marmé D, Quail PH, Schäfer E (1973) Phytochrome: First-order phototransformation kinetics in vivo. Planta 111 :329–336

    Article  Google Scholar 

  • Shimazaki Y, Inoue Y, Yamamoto KT, Furuya M (1980) Phototransformation of the red-light-absorbing form of undegraded pea phytochrome by laser flash excitation. Plant Cell Physiol 21:1619–1625

    CAS  Google Scholar 

  • Shinitzky M, Barenholz Y (1978) Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim Biophys Acta 515:367–394

    Article  PubMed  CAS  Google Scholar 

  • Shropshire W Jr (1979) Stimulus perception. In: Haupt W, Feinleib ME (eds) Physiology of movements. Encyclopedia of plant physiology new ser Vol 7. Springer, Berlin Heidelberg New York, pp 10–41

    Google Scholar 

  • Singer SJ (1974) The molecular organization of membranes. Annu Rev Biochem 43:805–833

    Article  PubMed  CAS  Google Scholar 

  • Smith H (1970) Phytochrome and photomorphogenesis in plants. Nature 227:665–668

    Article  PubMed  CAS  Google Scholar 

  • Spruit CJP (1980) Short term far-red reversibility of red potentiated chlorophyll accumulation in bean. In: DeGreef JA (ed) Photoreceptors and plant development. Antwerpen Univ Press, Antwerpen, pp 179–183

    Google Scholar 

  • Spruit CJP (1982) Phytochrome intermediates in vivo. IV. Kinetics of Pfr emergence. Photochem Photobiol 35:117–121

    Article  CAS  Google Scholar 

  • Spruit CJP, Kendrick RE (1972) On the kinetics of phytochrome photoconversion in vivo. Planta 103:319–326

    Article  CAS  Google Scholar 

  • Starr R, Gupta S, Acton J (1980) Rapid phytochrome activation of nitrate reductase in mustard cotyledons. Is it an artefact? In: DeGreef JA (ed) Photoreceptors and plant development. Antwerpen Univ Press, Antwerpen, pp 293–295

    Google Scholar 

  • Tanada T (1968) A rapid photoreversible response of barley root tips in the presence of 3-indoleacetic acid. Proc Natl Acad Sci USA 59:376–380

    Article  PubMed  CAS  Google Scholar 

  • Tezuka T, Yamamoto Y (1974) Kinetics of activation of nicotinamide adenine dinucleotide kinase by phytochrome, far-red absorbing form. Plant Physiol 53:717–722

    Article  PubMed  CAS  Google Scholar 

  • Thien W, Schopfer P (1982) Control by phytochrome of cytoplasmic rRNA synthesis in the cotyledons of mustard seedlings. Plant Physiol 69:1156–1160

    Article  PubMed  CAS  Google Scholar 

  • Thomas B, Tull SE (1981) Photoregulation of K+-ATPase in vitro by red and far-red light in extracts from cucumber hypocotyls. Z Pflanzenphysiol 102:283–292

    CAS  Google Scholar 

  • Tobin E (1981) Phytochrome-mediated regulation of messenger RNAs for the small subunit of ribulose 1,5-bisphosphate carboxylase and the light-harvesting chlorophyll a/b-protein in Lemna gibba. Plant Mol Biol 1:35–51

    Article  CAS  Google Scholar 

  • Vanderhoef LN, Quail PH, Briggs WR (1979) Red light-inhibited mesocotyl elongation in maize seedlings. II. Kinetic and spectral studies. Plant Physiol 63:1062–1067

    Article  PubMed  CAS  Google Scholar 

  • Van Eldik LJ, Grossman AR, Iverson DB, Watterson DM (1980) Isolation and characterization of calmodulin from spinach leaves and in vitro translation mixtures. Proc Natl Acad Sci USA 77:1912–1916

    Article  PubMed  CAS  Google Scholar 

  • Vierstra RD, Quail PH (1982) Native phytochrome: inhibition of proteolysis yields a homogeneous monomer of 124 kilodaltons from Avena. Proc Natl Acad Sci USA 79:5272–5279

    Article  PubMed  CAS  Google Scholar 

  • Wagné C (1965) The distribution of the light effect from irradiated to nonirradiated parts of grass leaves. Physiol Plant 18:1001–1006

    Article  Google Scholar 

  • Wagner G, Rossbacher R (1980) X-ray microanalysis and chlorotetracycline staining of calcium vesicles in the green alga Mougeotia. Planta 149:298–305

    Article  CAS  Google Scholar 

  • Warner TJ, Ross JD, Coombs J (1981) Phytochrome control of maize coleoptile section elongation. Plant Physiol 67:355–357

    Article  PubMed  CAS  Google Scholar 

  • Weintraub RL, Lawson VR (1972) Mechanism of phytochrome-mediated effects of light on cell growth. In: Book of Abstracts, VI Int Cong Photobiol Bochum, No 161

    Google Scholar 

  • Weisenseel MH, Ruppert HK (1977) Phytochrome and calcium ions are involved in light induced membrane depolarization in Nitella. Planta 137:225–229

    Article  CAS  Google Scholar 

  • Weisenseel MH, Smeibidl E (1973) Phytochrome controls the water permeability in Mougeotia. Z Pflanzenphysiol 70:420–431

    CAS  Google Scholar 

  • White JM, Pike CS (1974) Rapid phytochrome-mediated changes in adenosine 5′triphos-phate content of etiolated bean buds. Plant Physiol 53:76–79

    Article  PubMed  CAS  Google Scholar 

  • Whitelam GC, Johnson CB, Smith H (1979) The control by phytochrome of nitrate reductase in the curd of light-grown cauliflower. Photochem Photobiol 30:589–594

    Article  CAS  Google Scholar 

  • Wojcieszyn JW, Schlegel RA, Wu ES, Jacobson KA (1981) Diffusion of injected macromolecules within the cytoplasm of living cells. Proc Natl Acad Sci USA 78:4407–4410

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto KT, Smith WO, Furuya M (1980) Photoreversible Ca2+-dependent aggregation of purified phytochrome from etiolated pea and rye seedlings. Photochem Photobiol 32:233–240

    Article  CAS  Google Scholar 

  • Yunghans H, Jaffe MJ (1972) Rapid respiratory changes due to red light or acetylcholine during early events of phytochrome-mediated photomorphogenesis. Plant Physiol 49:1–7

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Quail, P.H. (1983). Rapid Action of Phytochrome in Photomorphogenesis. In: Shropshire, W., Mohr, H. (eds) Photomorphogenesis. Encyclopedia of Plant Physiology, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68918-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68918-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68920-8

  • Online ISBN: 978-3-642-68918-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation