Part of the book series: Handbook of Sensory Physiology ((1536,volume 7 / 3 / 3 A))

Abstract

Man, in common with many animals, has an extremely well developed ability to detect, discriminate and react to visual stimuli. The determinants of visual behaviour are many and include, for example, physical factors such as ambient illumination and the optical properties of the eye, behavioural or psychological factors such as the subject’s past experience, as well as the neurophysiological factors with which this chapter is particularly concerned. It is, of course, a basic assumption of neurophysiologists that the neurophysiological organisation of the visual pathway, and of the associative and efferent pathways involved in visually based behaviour, determines all measures of visual behaviour, from basic measures such as absolute sensitivity and visual acuity to the higher functions of visual memory, discrimination and perception. Yet, although psychophysicists and psychologists have investigated visual performance at all these levels, present understanding of the neurophysiological mechanisms of vision extends very little past the mechanisms involved in processing visual input. Our principal emphasis consequently is on the neurophysiological encoding of form information in the afferent visual pathway, and discussion of behavioural and psychophysical assessments of form vision is included only where relevant neurophysiological mechanisms have been described or sought. For the same reason the term “form discrimination” is taken to denote the behavioural demonstration by an experimental subject (whether animal or human) of the ability to distinguish one form or pattern or shape from another; this excludes from our scope one of the ultimate problems of form vision, viz. how neural activity gives rise to perception. Similarly, no distinction is made between the terms “pattern”, “shape” or “form”, although there may be grounds for doing so in other contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alpern, M. : Movements of the eyes: Types of movement. In: Davson, H. (Ed.): The Eye. Vol. 3, pp. 63–151. New York: Academic Press 1962.

    Google Scholar 

  • Anderson, K. V., Symmes, D.: The superior colliculus and higher visual functions in the monkey. Brain Res. 13, 37–52 (1969).

    PubMed  CAS  Google Scholar 

  • Bailey, P., Von Bonin, G.: In: Urbana, III.: The Isocortex of Man. Univ. of Illinois Press 1951.

    Google Scholar 

  • Baker, F.H., Sanseverino, E.K., Lammarre,Y., Poggio, G. F.: Excitatory responses of geniculate neurones of the cat. J. Neurophysiol. 32, 916–929 (1969).

    PubMed  CAS  Google Scholar 

  • Barlow, H.B.: Possible principles underlying the transformations of sensory messages. In: Rosenblith, W. A. (Ed.): Sensory Communication. Cambridge, Mass.: M. I. T. Press 1961a.

    Google Scholar 

  • Barlow, H.B.: Three points about lateral inhibition. In: Rosenblith, W.A. (Ed.): Sensory Communication. Cambridge, Mass.: M. I. T. Press 1961 b.

    Google Scholar 

  • Barlow, H.B.: Slippage of contact lenses and other artefacts in relation to fading and regeneration of supposedly stabilised retinal images. Quart. J. exp. Psychol. 15, 36–51 (1963).

    Google Scholar 

  • Barlow, H.B., Blakemore, C., Pettigrew, J. D.: The neural mechanism of binocular depth discrimination. J. Physiol. (Lond.) 193, 327–342 (1967).

    CAS  Google Scholar 

  • Barlow, H.B., Fitzhugh, R., Kuffler, S.W.: Change of organisation in the receptive fields of the cat’s retina during dark adaptation. J. Physiol. (Lond.) 137, 338–354 (1957).

    CAS  Google Scholar 

  • Barlow, H.B., Hill, R.M., Levick, W.R.: Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit. J. Physiol. (Lond.) 173, 377–407 (1964).

    CAS  Google Scholar 

  • Bartley, S.H.: Vision: A study of its basis. New York: Van Nostrand 1941.

    Google Scholar 

  • Baumgartner, G.: Die Reaktionen der Neurone des zentralen visuellen Systems der Katze im simultanen Helligkeitskontrast. In: Jung, R., Kornhuber, H. H. (Eds.): Neurophysiologie und Psychophysik des visuellen Systems. Berlin-Göttingen-Heidelberg: Springer 1961a.

    Google Scholar 

  • Baumgartner, G.: Der Informationswert der On-Zentrum und OffZentrum Neurone. In: Jung,R., Korn-Huber, H.H. (Eds.): Neurophysiologie und Psychophysik des visuellen Systems. Berlin-Göttingen-Heidelberg: Springer 1961b.

    Google Scholar 

  • Baumgartner, G., Brown, J.L., Schulz, A.: Responses of single units of the cat visual system to rectangular stimulus patterns. J. Neurophysiol. 38, 1–18 (1965).

    CAS  Google Scholar 

  • Beeler, G.W., JR.: Visual threshold changes resulting from spontaneous saccadic eye movements. Vision Res. 7, 769–775 (1967).

    PubMed  Google Scholar 

  • Békésy,G. Von: Mach-and Hering-type lateral inhibition in vision. Vision Res. 8, 1483–1499 (1968).

    Google Scholar 

  • Bishop, P.O., Kozak, W., Levick, W.R., Vakkur, G. J.: The determination of the projection of the visual field onto the lateral geniculate nucleus in the cat. J. Physiol. (Lond.) 163, 503–539 (1962).

    CAS  Google Scholar 

  • Bizzi, E.: Changes in orthodromic and antidromic responses of optic tract during the eye movements of sleep. J. Neurophysiol. 29, 861–870 (1966 a).

    PubMed  CAS  Google Scholar 

  • Bizzi, E.: Discharge patterns of single geniculate neurones during the rapid eye movements of sleep. J. Neurophysiol. 29, 1087–1095 (1966 b).

    PubMed  CAS  Google Scholar 

  • Blakemore, C., Campbell, F.W.: Adaptation to spatial stimuli. J. Physiol. (Lond.) 200, 11–13 P (1968).

    Google Scholar 

  • Blakemore, C., Campbell, F.W.: On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. J. Physiol. (Lond.) 203, 237–261 (1969).

    CAS  Google Scholar 

  • Blough, P. M.: Difference limen as a function of retinal eccentricity and background brightness. J. opt. Soc. Amer. 48, 731–735 (1958).

    CAS  Google Scholar 

  • Boycott, B.B., Dowling, J.E.: Organisation of the primate retina: light microscopy. Phil. Trans, roy. Soc. B 255, 109–184 (1969).

    Google Scholar 

  • Boynton, R.M.: Some temporal factors in vision. In: Rosenblith, W. A. (Ed.): Sensory Communication. Cambridge, Mass.: M. I. T. Press 1961.

    Google Scholar 

  • Boynton, R.M.: Spatial vision. Annual Rev. Psychol. 18, 171–200 (1962).

    Google Scholar 

  • Brown, J.L., Baumgartner,G.: Discussion on visual encoding. In: The Physiological Basis of Form Discrimination. NIH Symposium, Brown Univ., Providence, R. I. 1964.

    Google Scholar 

  • Burns, B.D., Heron, W., Pritchard, R.: Physiological excitation of the visual cortex in the cat’s unanaesthetised isolated forebrain. J. Neurophysiol. 25, 165–181 (1962).

    PubMed  CAS  Google Scholar 

  • Burns, B.D., Heron, W., Pritchard, R., Pritchard, R.: Contrast discrimination by neurones in the cat’s visual cortex. J. Physiol. (Lond.) 175, 445–463 (1964).

    CAS  Google Scholar 

  • Cajal, R.Y.: Le lobe optique des vertébrés inférieurs. In: Histologie du système nerveux de l’homme et des vertébrés. Paris: A. Maloine 1911.

    Google Scholar 

  • Campbell, F. W., Cleland, B.G., Cooper, G. P., Enroth-Cugell, C.: The angular selectivity of visual cortical cells to moving gratings. J. Physiol. (Lond.) 198, 237–250 (1968).

    CAS  Google Scholar 

  • Cooper, G. F., Enroth-Cugell, C.: The spatial selectivity of the visual cells of the cat. J. Physiol. (Lond.) 203, 223–236 (1969).

    Google Scholar 

  • Campbell, F.W., Cooper, G.F., Robson, J.G., Sachs, M.B.: The spatial selectivity of visual cells of the cat and squirrel monkey. J. Physiol. (Lond.) 204, 120 P (1969).

    Google Scholar 

  • Sachs, M.B., Green, D.G.: Optical and retinal factors affecting visual resolution. J. Physiol. (Lond.) 181, 576–593 (1965).

    Google Scholar 

  • Sachs, M.B., Kulikowski, J. J.: Orientation selectivity of the human visual system. J. Physiol. (Lond.) 187, 437–446 (1966).

    Google Scholar 

  • Sachs, M.B., Maffei, L.: Electrophysiological evidence for the existence of orientation and size detectors in the human visual system. J. Physiol. (Lond.) 207, 635–652 (1970).

    Google Scholar 

  • Cheatham, P. G., White, C.T.: Temporal numerosity: I. Perceived number as a function of flash number and rate. J. exp. Psychol. 44, 447–451 (1952).

    PubMed  CAS  Google Scholar 

  • Cheatham, P. G., White, C.T.: Temporal numerosity: III. Auditory perception of number. J. exp. Psychol. 47, 425 to 428 (1954).

    PubMed  CAS  Google Scholar 

  • Chow, K.-L., Blum, J.S., Blum, R.A.: Cell ratios in the thalamocortical visual system of Macaca Mulatta. J. comp. Neurol. 92, 227–239 (1950).

    PubMed  CAS  Google Scholar 

  • Cleland, B.G., Dttbin, M.W., Levick, W.R.: Simultaneous recording of cat geniculate cells and the retinal ganglion cells driving them. Proc. Aust. Physiol. Pharmacol. Soc. 1 /1, 27 (1970a).

    Google Scholar 

  • Cleland, B.G., Dubin, M.W., Levick, W.R.: Field suppression: A functional property of cat lateral geniculate cells. Proc. Aust. Physiol. Pharmacol Physiol. Pharmacol. Soc. 1 /1, 26 (1970b).

    Google Scholar 

  • Cleland, B.G., Dubin, M.W., Levick, W.R.: Sustained and transient neurones in the cat’s retina and lateral geniculate nucleus. J. Physiol. (Lond.) 217, 473–496 (1971).

    CAS  Google Scholar 

  • Enroth-Cugell, C.: Quantitative aspects of sensitivity and summation in the cat retina. J. Physiol. (Lond.) 198, 17–38 (1968).

    Google Scholar 

  • Colonnier, M.: The tangential organisation of the visual cortex. J. Anat. 98, 327–344 (1964).

    PubMed  CAS  Google Scholar 

  • Colonnier, M.: Synaptic patterns on different cell types in the different laminae of the cat visual cortex: an electron microscope study. Brain Res. 9, 268–287 (1968).

    PubMed  CAS  Google Scholar 

  • Cornsweet, T. N.: Determination of the stimuli for involuntary drifts and saccadic eye movements. J. opt. Soc. Amer. 46, 987–993 (1956).

    CAS  Google Scholar 

  • Cornsweet, T. N.: Visual Perception. New York: Academic Press 1970.

    Google Scholar 

  • Cowey, A.: Projection of the retina onto striate and prestriate cortex in monkeys. J. Neurophysiol. 27, 366–393 (1964).

    PubMed  CAS  Google Scholar 

  • Ellis, C.M.: The cortical representation of the retina in squirrel and rhesus monkeys and its relation to visual acuity. Exp. Neurol. 24, 374–385 (1969).

    PubMed  Google Scholar 

  • Cretuzfeldt, O., Ito, M.: Functional synaptic organisation of primary visual cortex neurones in the cat. Exp. Brain Res. 0, 324–352 (1968).

    Google Scholar 

  • Cronly-Dillon, J.R.: Units sensitive to direction of movement in the goldfish optic tectum. Nature (Lond.) 203, 214 (1964).

    CAS  Google Scholar 

  • Crosby, E.C., Humphrey, T., Latjer, E.W.: Correlative anatomy of the nervous system. New York: MacMillan 1962.

    Google Scholar 

  • Denney, D., Baumgartner, G., Adorjani, C.: Responses of cortical neurones to stimulation of the visual afferent radiations. Exp. Brain Res. 6, 265–272 (1968).

    PubMed  CAS  Google Scholar 

  • Deutsch, J. A.: A theory of shape recognition. Brit. J. Psychol. 46, 30–37 (1955).

    PubMed  CAS  Google Scholar 

  • Dews, P. B., Wiesel, T.N.: Consequences of monocular deprivation on visual behaviour in kittens. J. Physiol. (Lond.) 206, 437–455 (1970).

    CAS  Google Scholar 

  • Diamond, A. L.: Foveal simultaneous brightness contrast as a function of inducing- and test- field luminances. J. exp. Psychol. 45, 304–314 (1953).

    PubMed  CAS  Google Scholar 

  • Diamond, I.T., Hall, W.C.: Evolution of neocortex. Science 164, 251–262 (1969).

    PubMed  CAS  Google Scholar 

  • Ditchburn, R.W.: Eye movements in relation to retinal action. Optica Acta 1, 171–176 (1955).

    Google Scholar 

  • Fender, D.H.: The stabilised retinal image. Optica Acta 2, 128–133 (1955).

    Google Scholar 

  • Mayne, S.: Vision with controlled movements of the retinal image. J. Physiol. (Lond.) 145, 98–107 (1959).

    Google Scholar 

  • Ginsborg, B.L.: Vision with a stabilised retinal image. Nature (Lond.) 170, 36–37 (1952).

    Google Scholar 

  • Ginsborg, B.L.: Involuntary eye movements during fixation. J. Physiol. (Lond.) 119, 1–17 (1953).

    Google Scholar 

  • Dodwell, P.C., Freedman, N.L.: Visual form discrimination after removal of the visual cortex in cats. Science 160, 559–560 (1968).

    PubMed  CAS  Google Scholar 

  • Dorff, J.E., Mirsky, A.F., Mishkin, M.: Effects of unilateral temporal lobe removals in man on tachistoscopic recognition in the left and right visual fields. Neuropsychology 3, 39–51 (1965).

    Google Scholar 

  • Dow, B.M., Dubner, R.: Visual receptive fields and responses to movement in an association area of the cat cerebral cortex. J. Neurophysiol. 32, 773–784 (1969).

    PubMed  CAS  Google Scholar 

  • Dubner, R., Brown, F. J.: Response of cells to restricted visual stimuli in an association area of cat cerebral cortex. Exp. Neurol. 20, 70–86 (1968).

    PubMed  CAS  Google Scholar 

  • Rutledge, L. T.: Recording and analysis of converging input upon neurones in cat association cortex. J. Neurophysiol. 27, 620–634 (1964).

    PubMed  Google Scholar 

  • Enroth-Cugell, C., Robson, J. G.: The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol. (Lond.) 187, 517–552 (1966).

    CAS  Google Scholar 

  • Eriksen, C.W., Collins, J. F.: Some temporal characteristics of visual pattern perception. J. exp. Psychol. 74, 476–484 (1967).

    PubMed  CAS  Google Scholar 

  • Feldman, M., Cohen, B.: Electrical activity in the lateral geniculate body of the alert monkey associated with eye movements. J. Neurophysiol. 31, 455–466 (1968).

    PubMed  CAS  Google Scholar 

  • Fiorentini, A., Jeanne, M., Di Francia, G. T.: Mesures photometriques sur un champ a gradient d’eclairement variable. Optica Acta 1, 192–193 (1955).

    Google Scholar 

  • Fite, K.V.: Single unit analysis of binocular neurones in the frog optic tectum. Exp. Neurol. 24, 475–486 (1969).

    PubMed  CAS  Google Scholar 

  • Fry, G.A., Alpern, M.: The effect of a peripheral glare source upon the apparent brightness of an object.. J opt. Soc. Amer. 43, 189–195 (1953).

    CAS  Google Scholar 

  • Bartley, S.H.: The effect of one border in the visual field upon the threshold of another. Amer. J. Physiol. 112, 414–421 (1935).

    Google Scholar 

  • Fukada, Y.: Receptive field organisation of cat optic nerve fibres with special reference to conduction velocity. Vision Res. 11, 209–226 (1971).

    PubMed  CAS  Google Scholar 

  • Gaarder, K.: Transmission of edge information in the human visual system. Nature (Lond.) 212, 321–323 (1966).

    CAS  Google Scholar 

  • Ganz, L., Fitch, M.: The effect of visual deprivation on perceptual behaviour. Exp. Neurol. 22, 638–660 (1969).

    Google Scholar 

  • Satterberg, J.A.: The selective effect of visual deprivation on receptive field shape determined neurophysiologically. Exp. Neurol. 22, 614–637 (1969).

    Google Scholar 

  • Garey, L. J.: The termination of thalamocortical fibres in the visual cortex of the cat and monkey. J. Physiol. (Lond.) 210, 15–17 P (1970).

    Google Scholar 

  • Powell, T. P. S.: The projection of the lateral geniculate nucleus upon the cortex in the cat. Proc. Roy. Soc. B 169, 107–126 (1967).

    Google Scholar 

  • Gaze, R.M., Keating, M.J.: Receptive field properties of single units from the visual projection to the ipsilateral tectum in the frog. Quart. J. exp. Physiol. 55, 143–152 (1970).

    PubMed  CAS  Google Scholar 

  • Globus, A., Scheibel, A.B.: Synaptic loci on visual cortical neurones of the rabbit: The specific afferent radiation. Exp. Neurol. 18, 116–131 (1967).

    PubMed  CAS  Google Scholar 

  • Gouras, P.: The effects of light-adaptation on rod and cone receptive field organisation of monkey ganglion cells. J. Physiol. (Lond.) 192, 747–760 (1967).

    CAS  Google Scholar 

  • Gouras, P.: Trichromatic mechanisms in single cortical neurones. Science 168, 489–492 (1970).

    PubMed  CAS  Google Scholar 

  • Graham, C.H., (Ed.): Vision and visual perception. New York: John Wiley 1965.

    Google Scholar 

  • Graham, N., Nachmias, J.: Detection of grating patterns containing two spatial frequencies: A comparison of single-channel and multichannel models. Vision Res. 11, 251–260 (1971).

    PubMed  CAS  Google Scholar 

  • Gray, E.C.: Electromicroscopy of excitatory and inhibitory synapses: A brief review. Progr. Brain Res. 31, 141–155 (1969).

    CAS  Google Scholar 

  • Green, D.G.: Regional variations in the visual acuity for interference fringes on the retina. J. Physiol. (Lond.) 207, 351–356 (1970).

    CAS  Google Scholar 

  • Gregory, R. L.: Eye movements and the stability of the visual world. Nature (Lond.) 182, 1214–1216 (1958).

    CAS  Google Scholar 

  • gross, C.G., Bender, D.B., Rocha-Miranda,C.A.: Visual receptive fields of neurones in inferotemporal cortex of the monkey. Science 166, 1303–1306 (1969).

    Google Scholar 

  • Schiller, P. H., Wells, C., Gerstein, G. L.: Single unit activity in temporal association cortex of the monkey. J. Neurophysiol. 30, 833–843 (1967).

    PubMed  Google Scholar 

  • Guillery, R. W.: A quantitative study of synaptic interconnection in the dorsal lateral geniculate nucleus of the cat. Z. Zellforsch. mikr. Anat. 96, 39–48 (1969).

    Google Scholar 

  • Haber, R.N., (Ed.): Information-processing approaches to visual perception. New York: Holt, Rinehart and Winston (1969).

    Google Scholar 

  • Haber, R.N.,How we remember what we see. Sci. Amer. 222/5, 104–112 (1970).

    Google Scholar 

  • Hake, H.W.: Form discrimination and the invariance of form. In: Uhr, L. (Ed.): Pattern Recognition, pp. 142–173. New York: John Wiley 1966.

    Google Scholar 

  • Hartline, H.K.: Inhibition of activity of visual receptors by illuminating nearby retinal elements in the Limulus eye. Fed. Proc. 8, 69 (1949).

    Google Scholar 

  • Wagner, H.G., Ratliff, F.: Inhibition in the eye of Limulus. J. gen. Physiol. 39, 651–673 (1956).

    PubMed  Google Scholar 

  • Hebbard, F.W., Marg, E.: Physiological nystagmus in the cat. J. opt. Soc. Amer. 50, 151–155 (1960).

    CAS  Google Scholar 

  • Held, R.: Dissociation of visual functions by deprivation and rearrangement. Psychol. Forsch. 31, 338–348 (1968).

    Google Scholar 

  • Helmholtz, H. von: Handbuch der physiologischen Optik, Vol. 3. Hamburg: Voss 1867.

    Google Scholar 

  • Helmholtz, H. von:Treatise on physiological optics, 3rd Ed. Southall, J.P.C. (Ed.): Rochester, N. Y.: Opt. Soc. Amer. 1910.

    Google Scholar 

  • Henry, G.H., Bishop, P.O.: Simple cells of the striate cortex. In: Neff, W.D. (Ed.): Contributions to Sensory Physiology. 5, 1–46, (1971). New York: Academic Press.

    Google Scholar 

  • Coombs, J.S.: Inhibitory and subliminal excitatory receptive fields of simple units in cat striate cortex. Vision Res. 9, 1289–1296 (1969).

    PubMed  Google Scholar 

  • Ering, E.: Zur Lehre vom Lichtsinne. I. II. III. IV. V. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien. Mathematisch-naturwissenschaftliche Classe. Abh. III. 66, 5–24 (1872); 68, 186–201 (1874); 68, 229–244 (1874); 69, 85–104 (1874); 69, 179–217 (1874).

    Google Scholar 

  • Ering, E.: Outline of a theory of the light sense. Trans.: Hurvich, L.M., Jameson, D. Cambridge, Mass.: Harvard Univ. Press 1964.

    Google Scholar 

  • Hill, R.M.: Receptive field properties of the superior colliculus of the rabbit. Nature (Lond.) 211, 1407–1409 (1966).

    CAS  Google Scholar 

  • Goodwin, H.: Visual receptive fields from cells of a marsupial (Didelphis virginiana) superior colliculus. Experientia (Basel) 24, 559–560 (1968).

    Google Scholar 

  • Hoffmann, K.P., Stone,J.: Conduction velocity of afferents to cat visual cortex: a correlation with receptive field properties. Brain Res., 32, 460–466 (1971).

    Google Scholar 

  • Holden, A. L.: Receptive properties of retinal cells and tectal cells in the pigeon. J. Physiol. (Lond.) 201, 56–57 P (1969).

    Google Scholar 

  • Holländer, H.: The projection from the visual cortex to the lateral geniculate body: An experimental study with silver impregnation methods in the cat. Exp. Brain Res. 10, 219–219 (1970).

    PubMed  Google Scholar 

  • Horn, G., Hill, R.M.: Responsiveness to sensory stimulation of units in the superior colliculus and subadjacent tectotegmental regions of the rabbit. Exp. Neurol. 14, 199–223 (1966).

    PubMed  CAS  Google Scholar 

  • Houlihan, K., Sekuler, R. W.: Contour interactions in visual masking. J. exp. Psychol. 77, 281–285 (1968).

    PubMed  CAS  Google Scholar 

  • Hubel, D.H.: Single unit activity in striate cortex of unrestrained cats. J. Physiol. (Lond.) 147, 226–238 (1959).

    CAS  Google Scholar 

  • Hubel, D.H.: Single unit activity in lateral geniculate body and optic tract of unrestrained cats. J. Physiol. (Lond.) 150, 91–104 (1960).

    CAS  Google Scholar 

  • Hubel, D.H.: The visual cortex of the brain. Sci. Amer. 209/5, 54–77 (1963).

    Google Scholar 

  • Wiesel, T.N.: Receptive fields of single neurones in the cat’s striate cortex. J. Physiol. (Lond.) 148, 574–591 (1959).

    Google Scholar 

  • Wiesel, T.N.: Receptive fields of optic nerve fibres in the spider monkey. J. Physiol. (Lond.) 154, 572–580 (1960).

    Google Scholar 

  • Wiesel, T.N.: Integrative action in the cat’s lateral geniculate body. J. Physiol. (Lond.) 155, 385–398 (1961).

    Google Scholar 

  • Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962).

    Google Scholar 

  • Wiesel, T.N.: Shape and arrangement of columns in cat’s striate cortex. J. Physiol. (Lond.) 165, 559 to 568 (1963).

    Google Scholar 

  • Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture in two non-striate visual areas (18 and 19) of the cat. J. Neurophysiol. 28, 229–289 (1965a).

    PubMed  CAS  Google Scholar 

  • Hubel, D.H., Wiesel, T.N.: Binocular interaction in striate cortex of kittens reared with artificial squint. J. Neuro-physiol. 28, 1041–1059 (1965 b).

    CAS  Google Scholar 

  • Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture of monkey striate cortex. J. Physiol. (Lond.) 195, 215–243 (1968).

    CAS  Google Scholar 

  • Hubel, D.H., Wiesel, T.N.: Visual area of the lateral suprasylvian gyrus (Clare-Bishop area). J. Physiol. (Lond.) 202, 251–260 (1969 a).

    CAS  Google Scholar 

  • Hubel, D.H., Wiesel, T.N.: Anatomical demonstration of columns in the monkey striate cortex. Nature (Lond.) 221, 747–750 (1969 b).

    CAS  Google Scholar 

  • Hubel, D.H., Wiesel, T.N.: The period of susceptibility to the physiological effect of unilateral eye closure in kittens. J. Physiol. (Lond.) 206, 419–436 (1970 a).

    CAS  Google Scholar 

  • Hubel, D.H., Wiesel, T.N.: Stereoscopic vision in macaque monkey. Nature. 225, 41–42 (1970 b).

    PubMed  CAS  Google Scholar 

  • Humphrey, N.K.: Responses to visual stimuli of units in the superior colliculus of rats and monkeys. Exp. Neurol. 20, 312–340 (1968).

    PubMed  CAS  Google Scholar 

  • Humphrey, N.K., Weiskrantz, L.: Vision in monkeys after removal of the striate cortex. Nature (Lond.) 215, 595–597 (1967).

    CAS  Google Scholar 

  • Jacobson, M., Gaze, R.M.: Types of visual response from single units in the optic tectum and optic nerve of the goldfish. Quart. J. exp. Physiol. 49, 199–209 (1964).

    PubMed  CAS  Google Scholar 

  • Jones, E. G., Powell, T. P. S.: An electron microscopic study of the laminar pattern and mode of termination of different fibre pathways in the somatic sensory cortex of the cat. Phil. Trans, roy. Soc. Lond. B 257, 45–62 (1970).

    CAS  Google Scholar 

  • Joshua, D.E., Bishop, P.O.: Binocular single vision and depth discrimination. Receptive field disparities for central and peripheral vision and binocular interaction of peripheral single units in cat striate cortex. Exp. Brain Res. 10, 389–416 (1970).

    PubMed  CAS  Google Scholar 

  • Jtog, R.: Korrelationen von Neuronentatigkeit und Sehen. In: Jung, R., Kornhuber, H.H. (Eds.): Neurophysiologie und Psychophysik des visuellen Systems. Berlin-Gottingen-Heidelberg: Springer 1961.

    Google Scholar 

  • Jtog, R.: Neuronale Grundlagen des Hell-Dunkelsehens und der Farbwahrnehmung. Bericht 66. Zusammenkunft der Dtsch. Ophthalmol. Ges., Heidelberg. Miinchen: BergmannVerlag 1964.

    Google Scholar 

  • Kawamtjra, H., Marchiafava, P.L.: Excitability changes along visual pathways during eye tracking movements. Arch. ital. Biol. 106, 141–156 (1968).

    Google Scholar 

  • Keating, M. J., Gaze, R.M.: Observations on the “surround” properties of the receptive fields of frog retinal ganglion cells. Quart. J. exp. Physiol. 55, 129–142 (1970).

    PubMed  CAS  Google Scholar 

  • Keesey, U.T.: Effects of involuntary eye movements on visual acuity. J. opt. Soc. Amer. 50, 769–773 (1960).

    CAS  Google Scholar 

  • Kluver, H.: Visual functions after removal of the occipital lobes. J. Psychol. 11, 23–45 (1941).

    Google Scholar 

  • Kozak, W., Rodieck, R.W., Bishop, P.O.: Responses of single units in lateral geniculate nucleus of cat to moving visual patterns. J. Neurophysiol. 28, 19–47 (1965).

    PubMed  CAS  Google Scholar 

  • Kuffler, S.W.: Discharge patterns and functional organisation of mammalian retina. J. Neurophysiol. 16, 37–68 (1953).

    PubMed  CAS  Google Scholar 

  • Kuypers, S.G., Szwarcbart, M.K., Mishkin, M., Rosvold, H.E.: Occipitotemporal corticocortical connections in the rhesus monkey. Exp. Neurol. 11, 245–262 (1965).

    PubMed  CAS  Google Scholar 

  • Lashley, K.S.: The mechanism of vision. XV: Preliminary studies of the rat’s capacity for detail vision. J. gen. Psychol. 18, 123–193 (1938).

    Google Scholar 

  • Legrand, Y.: Form and space vision. Bloomington, Ind.: Indiana Univ. Press (1967).

    Google Scholar 

  • Leibowitz, H., Mote, F. A., Thurlow, W. R.: Simultaneous contrast as a function of separation between test and inducing fields. J. exp. Psychol. 46, 453–456 (1953).

    PubMed  CAS  Google Scholar 

  • Lettvin, J.Y., Maturana, H.R., Pitts, W.H., McCulloch, W.S.: Two remarks on the visual system of the frog. In: Rosenblith, W.A. (Ed.): Sensory Communication. Cambridge, Mass.: M. I. T. Press 1961.

    Google Scholar 

  • Levick, W.R.: Receptive fields and trigger features of ganglion cells in the visual streak of the rabbit. J. Physiol. (Lond.) 188, 285–307 (1967).

    CAS  Google Scholar 

  • Levick, W.R.: Oyster, C.W., Takahashi, E.: Rabbit lateral geniculate nucleus: Sharpener of directional information. Science 165, 712–714 (1969).

    PubMed  CAS  Google Scholar 

  • Levick, W.R., Zacks, J.L.: Responses of cat retinal ganglion cells to brief flashes of light. J. Physiol. (Lond.) 206, 677–700 (1970).

    CAS  Google Scholar 

  • Lorente De Nô, R.: Studies on the structure of the cerebral cortex. II. Continuation of the study of the Amnionic system. J. Psychol. Neurol. 46, 113–117 (1934).

    Google Scholar 

  • Ludyigh, E. J.: The visibility of moving objects. Science 108, 63–64 (1948).

    Google Scholar 

  • Ludyigh, E. J., Miller, J. W.: Study of visual acuity during the ocular pursuit of moving test objects. I. Introduction. J. opt. Soc. Amer. 48, 799–802 (1958).

    Google Scholar 

  • Mach, E.: Über die Wirkung der räumlichen Verteilung des Lichtreizes auf die Netzhaut. I. Sitzungsberichte der mathematisch-naturwissenschaftlichen Klasse der Kaiserlichen Akademie der Wissenschaften 52 /2, 303–322 (1865).

    Google Scholar 

  • Mach, E., Über den physiologischen Effect räumlich vertheil ter Lichtreize (Zweite Abhandlung). Sitzungsberichte (see above) 54 /2, 131–144 (1866a).

    Google Scholar 

  • Mach, E., Über die physiologische Wirkung räumlich vertheilter Lichtreize (Dritte Abhandlung). Sitzungsberichte (see above) 54/2, 393–408 (1866 b).

    Google Scholar 

  • Mach, E., Über die physiologische Wirkung räumlich vertheilter Lichtreize (Vierte Abhandlung). Sitzungsberichte (see above) 57/2, 11–19 (1868 a).

    Google Scholar 

  • Mach, E., Über die Abhängigkeit der Netzhautstellen von einander. Vjschr. f. Psychiatrie in ihren Beziehungen zur Morphologie undPathologie des Central-Nervensystems 2, 38–51 (1868b).

    Google Scholar 

  • Mackay, D.M.: Perceptual stability of a stroboscopically lit visual field containing self-luminous objects. Nature (Lond.) 181, 507–508 (1958).

    CAS  Google Scholar 

  • Mackay, D.M.: Elevation of visual threshold by displacement of retinal image. Nature (Lond.) 225, 90 to 92 (1970a).

    Google Scholar 

  • Mackay, D.M.: Interocular transfer of suppressive effects of retinal image displacement. Nature (Lond.) 225, 872–873 (1970 b).

    CAS  Google Scholar 

  • Marg, E., Adams, J.E., Rutkin, B.: Receptive fields of cells in the human visual cortex. Experientia (Basel) 24, 348–350 (1968)

    CAS  Google Scholar 

  • Marty, R., Benoit, O., Languier, M.M.: Étude topographique et stratigraphique des projections du corps genouillé latéral sur le cortex cérébral. Arch. ital. Biol. 107, 723–742 (1969).

    Google Scholar 

  • Maturana, H.R., Frenk,S.: Directional movement and horizontal edge detectors in the pigeon retina. Science 142, 977–979 (1963).

    PubMed  CAS  Google Scholar 

  • Maturana, H.R., Lettvin, J. Y., Pitts, W.H., McCulloch, W.S.: Physiology and anatomy of vision in the frog. J. gen. Physiol. 43 (suppl.), 129–175 (1960).

    PubMed  Google Scholar 

  • Mcilwain, J.T., Buser, P.: Receptive fields of single cells in the cat’s superior colliculus. Exp. Brain Res. 5, 314–325 (1968).

    PubMed  CAS  Google Scholar 

  • Meyer, P. M.: Analysis of visual behavior in cats with extensive cortical ablations. J. comp. physiol. Psychol. 56, 397–401 (1963).

    CAS  Google Scholar 

  • Meyers, B., McCleary, R.A.: Interocular transfer of a pattern discrimination in pattern deprived cats. J. comp, physiol. Psychol. 57, 16–21 (1964).

    CAS  Google Scholar 

  • Michael, C.R.: Receptive fields of directionally selective units in the optic nerve of the ground squirrel. Science 152, 1092–1095 (1966).

    PubMed  CAS  Google Scholar 

  • Michael, C.R.: Integration of visual information in the superior colliculus. J. gen. Physiol. 50, 2485–2486 (1967).

    Google Scholar 

  • Milner, B.: Visual recognition and recall after right temporal lobe excision in man. Neuropsychol. 6, 191–209 (1968).

    Google Scholar 

  • Nachmias, J.: Two-dimensional motion of the retinal image during fixation. J. opt. Soc. Amer. 49, 901–908 (1959).

    CAS  Google Scholar 

  • Nachmias, J., Sachs, M. B., Robson, J.G.: Independent spatial frequency channels in human vision. J. opt. Soc. Amer. 59, 1538 A (1969).

    Google Scholar 

  • Niimi, S.K., Sprague, J.M.: Thalamo-cortical organisation of the visual system in the cat. J. comp. Neurol. 188, 219–250 (1970).

    Google Scholar 

  • Noda, H., Freeman, R.B., Jr., Creutzfeldt, O.: Neuronal correlates of eye movements in the visual cortex of the cat. Science 175, 661–664 (1972).

    PubMed  CAS  Google Scholar 

  • Noda, H., Gies, B., Creutzfeldt, O.: Neuronal responses in the visual cortex of awake cats to stationary and moving targets. Exp. Brain Res. 12, 389–405 (1971).

    Google Scholar 

  • Noda, H., Iwama, K.: Unitary analysis of retinogeniculate response times in rat. Vision Res. 7, 205–213 (1967)

    PubMed  CAS  Google Scholar 

  • O’Brien, V.: Contour perception, illusion and reality. J. opt. Soc. Amer. 48, 112–119 (1958).

    Google Scholar 

  • Ogawa, T., Bishop, P.O., Levick,W.R.: Temporal characteristics of responses to photic stimulation by single ganglion cells in the unopened eye of the cat. J. Neurophysiol. 29, 1–30 (1966).

    PubMed  CAS  Google Scholar 

  • O’Leary, J.L.: Structure of the area striata of the cat. J. comp. Neurol. 75, 131–164 (1941).

    Google Scholar 

  • Otsuka, R., Hassler, R.: Über Aufbau und Gliederung der corticalen Sehsphäre bei der Katze. Arch. Psychiat. und Z. ges. Neurol. 203, 212–234 (1962).

    CAS  Google Scholar 

  • Oyster, C.W., Barlow, H.B.: Direction-selective units in rabbit retina: Distribution of preferred directions. Science 155, 841–842 (1967).

    PubMed  CAS  Google Scholar 

  • Pantle, A., Sekuler, R.: Size-detecting mechanisms in human vision. Science 162, 1146–1148 (1968 a).

    PubMed  CAS  Google Scholar 

  • Pantle, A., Velocity-sensitive elements in human vision: Initial psychophysical evidence. Vision Res. 8, 445–450 (1968 b).

    PubMed  CAS  Google Scholar 

  • Pantle, A., Contrast response of human visual mechanisms sensitive to orientation and direction of motion. Vision Res. 9, 397–406 (1969).

    PubMed  CAS  Google Scholar 

  • Pasik, T., Pasik, P., Bender, M.: The superior colliculi and eye movements. Arch. Neurol. 15, 420–436 (1966).

    PubMed  CAS  Google Scholar 

  • Pearlman, A. C., Daw, N. W.: Opponent color cells in the cat lateral geniculate nucleus. Science 167, 84–86 (1970).

    PubMed  CAS  Google Scholar 

  • Penfield, W., Perot, P.: The brain’s record of auditory and visual experience. Brain 86, 595–696 (1963).

    PubMed  CAS  Google Scholar 

  • Pettigrew, J.D., Nikara, T., Bishop, P.O.: Responses to moving slits by single units in cat striate cortex. Exp. Brain Res. 6, 373–390 (1968 a).

    PubMed  CAS  Google Scholar 

  • Pettigrew, J.D., Binocular interaction on single units in cat striate cortex: Simultaneous stimulation by single moving slits with receptive fields in correspondence. Exp. Brain Res. 6, 391–410 (1968 b).

    PubMed  CAS  Google Scholar 

  • Pirenne, M.H., Denton, E. J.: Accuracy and sensitivity of the human eye. Nature (Lond.) 170, 1039–1042 (1952).

    CAS  Google Scholar 

  • Polyak, S.: The retina. Chicago: Univ. Chicago Press 1941.

    Google Scholar 

  • Polyak, S.: The vertebrate visual system. Chicago: Univ. Chicago Press 1957.

    Google Scholar 

  • Pritchard, R.M., Heron, W.: Small eye movements of the cat. Canad. J. Psychol. 14, 131–137 (1960).

    PubMed  CAS  Google Scholar 

  • Ratliff, F.: Mach bands: Quantitative studies of the neural networks of the retina. San Francisco: Holden-Day 1965.

    Google Scholar 

  • Ratliff, F., Hartline, H. K.: The responses of Limulus optic nerve fibres to patterns of illumination of the retinal mosaic. J. gen. Physiol. 42, 1241–1255 (1959).

    PubMed  CAS  Google Scholar 

  • Ratliff, F., Miller, W. H.: Spatial and temporal aspects of retinal inhibitory interaction. J. opt. Soc. Amer. 53, 110–120 (1963).

    CAS  Google Scholar 

  • Riggs, L.A.: Visual acuity. In: Graham,C.H. (Ed.): Vision and visual perception. New York: John Wiley (1965).

    Google Scholar 

  • Riggs, L.A., Ratliff, F., Cornsweet, J.C., Cornsweet, T.: The disappearance of steadily fixated visual test objects. J. opt. Soc. Amer. 43, 495–501 (1953).

    CAS  Google Scholar 

  • Rodieck, R.W.: Receptive fields in the cat’s retina: A new type. Science 157, 90–92 (1967).

    PubMed  CAS  Google Scholar 

  • Rodieck, R.W., Stone, J.: Response of cat retinal ganglion cells to moving visual patterns. J. Neurophysiol. 28, 819–832 (1965 a).

    PubMed  CAS  Google Scholar 

  • Rodieck, R.W., Analysis of receptive fields of cat retinal ganglion cells. J. Neurophysiol. 28,833–849 (1965 b).

    Google Scholar 

  • Rolls, E.T., Cowey, A.: Topography of the retina and striate cortex and its relationship to visual acuity in rhesus monkeys and squirrel monkeys. Exp. Brain Res. 10, 298–310 (1970).

    PubMed  CAS  Google Scholar 

  • Sanides, F., Hoffman, J.: Cyto- and myeloarchitecture of the visual cortex of the cat and of the surrounding integration cortices. J. Hirnforsch. 11, 79–104 (1969).

    PubMed  CAS  Google Scholar 

  • Schneider, G.E.: Contrasting visuomotor functions of tectum and cortex in the Golden Hamster. Psychol. Forsch. 31, 52–62 (1968).

    Google Scholar 

  • Schneider, G.E.: Two visual systems. Science 163, 895–902 (1969).

    PubMed  CAS  Google Scholar 

  • Sekuler, R. W.: Spatial and temporal determinants of visual backward masking. J. exp. Psychol. 70, 401–406 (1965).

    PubMed  CAS  Google Scholar 

  • Sekuler, R. W., Rubin, E.L., Cushman, W.H.: Selectivities of human visual mechanisms for direction of movement and contour orientation. J. opt. Soc. Amer. 58, 1146–1150 (1968).

    CAS  Google Scholar 

  • Smith, K.U.: Visual discrimination in the cat: VI. The relation between pattern vision and visual acuity and the optic projection centres of the nervous system. J. gen. Psychol. 58, 251–272 (1938).

    Google Scholar 

  • Spear, P.D., Braun, J. J.: Pattern discrimination following removal of visual neocortex in cat. Exp. Neurol. 25, 331–348 (1969).

    PubMed  CAS  Google Scholar 

  • Sperling, G.: A model for visual memory tasks. Human Factors 5, 19–31 (1963).

    PubMed  CAS  Google Scholar 

  • Sprague, J.M., Berlucchi, G., Di Berardino, A.: The superior colliculus and pretectum in visually guided behaviour and visual discrimination in the cat. Brain, Behav. Evol. 3, 285–294 (1970).

    CAS  Google Scholar 

  • Steinman, R.M., Cunitz, R.J., Timberlake, G.T., Herman, M.: Voluntary control of microsaccades during maintained monocular fixation. Science 155, 1577–1579 (1967).

    PubMed  CAS  Google Scholar 

  • Sterling, P., Wickelgren, B. G.: Visual receptive fields in the superior colliculus of the cat. J. Neurophysiol. 32, 1–15 (1969).

    PubMed  CAS  Google Scholar 

  • Stone, J., Fabian, M.: Specialised receptive fields of the cat’s retina. Science 152, 1277–1279 (1966).

    PubMed  CAS  Google Scholar 

  • Stone, J., Hansen, S.M.: The projection of the cat’s retina on the lateral geniculate nucleus. J. comp. Neurol. 126, 601–624 (1966).

    PubMed  CAS  Google Scholar 

  • Stone, J., Hoffmann, K. P.: Conduction velocity as a parameter in the organisation of the afferent relay in the cat’s lateral geniculate nucleus. Brain Res. 32, 454–459 (1971).

    CAS  Google Scholar 

  • Straschill, M., Hoffmann, K. P.: Response characteristics of movement-detecting neurones in pretectal region of the cat. Exp. Neurol. 25, 165–176 (1969 a).

    PubMed  CAS  Google Scholar 

  • Stone, J., Functional aspects of localisation in the cat’s tectum opticum. Brain Res. 13, 274– 283 (1969 b).

    Google Scholar 

  • Stone, J., Taghavy, A.: Neuronale Reaktionen im Tectum Opticum der Katze auf bewegte und stationäre Lichtreize. Exp. Brain Res. 3, 353–367 (1967).

    Google Scholar 

  • Stroud, J.M.: The fine structure of psychological time. In: Quastler,H. (Ed.): Information Theory in Psychology. Glencoe, 111.: Free Press 1966.

    Google Scholar 

  • Sutherland, N.S.: Outlines of a theoory of visual pattern recognition in animals andman. Proc. roy. Soc. B 171, 297–317 (1968).

    CAS  Google Scholar 

  • Sutherland, N.S., Shape discrimination in rats, octopus and goldfish: A comparative study. J. comp, physiol. Psychol. 67, 160–176 (1969).

    CAS  Google Scholar 

  • Sutherland, N.S., Williams, C.: Discrimination of checkerboard patterns by rats. Quart. J. exp. Psychol. 21, 77–84 (1969).

    CAS  Google Scholar 

  • Talbot, S.A., Marshall, W.H.: Physiological studies on neural mechanisms of visual localisation and discrimination. Amer. J. Ophthal. 24, 1255–1264 (1941).

    Google Scholar 

  • Teller, D.Y., Andrews, D. P., Barlow, H.B.: Local adaptation in stabilized vision. Vision Res. 6, 701–705 (1966).

    PubMed  CAS  Google Scholar 

  • Teuber, H.-L.: Perception. In: Field, J., (Ed.): Washington,D.C.: Handbook of Physiology: Neurophysiology. Section 1, Vol. 3, pp. 1595–1668. Amer. Physiol. Soc. 1960.

    Google Scholar 

  • Teuber, H.-L., Battersby, W.S., Bender, M.B.: Visual field defects after penetrating missile wounds of the brain. Cambridge, Mass.: Harvard Univ. Press 1960.

    Google Scholar 

  • To Yam A, K., Matsunami, K.: Synaptic action of specific visual impulses upon cat’s parastriate cortex. Brain Res. 10, 473–476 (1968).

    Google Scholar 

  • Tokashiki, S., Matsunami, K.: Synaptic action of commissural impulses upon association efferent cells in cat visual cortex. Brain Res. 14, 518–520 (1969).

    PubMed  Google Scholar 

  • Trevarthen, C.B.: Two mechanisms of vision in primates. Psychol. Forsch. 31, 299–337 (1968).

    PubMed  CAS  Google Scholar 

  • Volkmann, F. O.: Vision during voluntary saccadic eye movements. J. opt. Soc. Amer. 52, 571–578 (1962).

    CAS  Google Scholar 

  • Trevarthen, C.B., Schick, A.M., Riggs, L.A.: Time course of visual inhibition during voluntary saccades. J. opt. Soc. Amer. 58, 562–569 (1968)

    Google Scholar 

  • Watanabe, S., Konishi, M., Creutzfeldt, O.: Postsynaptic potentials in the cat’s visual cortex following electrical stimulation of afferent pathways. Exp. Brain Res. 1, 272–283 (1966).

    PubMed  CAS  Google Scholar 

  • Weiskrantz, L.: Contour discrimination in a young monkey with striate cortex ablation. Neuropsychologia 1, 145–164 (1963).

    Google Scholar 

  • Weiskrantz, L., Cowey, A.: Filling in the scotoma: A study of residual vision after striate cortex lesions in monkeys. In: Stellar, E., Sprague, J.M. (Eds.): Progress in Physiological Psychology, pp. 237–260. New York: Academic 1970.

    Google Scholar 

  • Westheimer, G.: Eye movement responses to a horizontally moving stimulus. Arch. Ophthal. 52, 932–941 (1954).

    CAS  Google Scholar 

  • Westheimer, G., Modulation thresholds for sinusoidal light distributions on the retina. J. Physiol. (Lond.) 152, 67–74 (1960).

    CAS  Google Scholar 

  • Westheimer, G., Spatial interaction in the human retina during scotopic vision. J. Physiol. (Lond.) 181, 881–894 (1965).

    CAS  Google Scholar 

  • Westheimer, G., Spatial interaction in human cone vision. J. Physiol. (Lond.) 190, 139–154 (1967).

    CAS  Google Scholar 

  • Westheimer, G. Rod-cone independence for sensitizing interaction in the human retina. J. Physiol. (Lond.) 206, 109–116 (1970).

    CAS  Google Scholar 

  • Wetzel, A.B., Thompson, V.E., Horel, J.A., Meyer, P.M.: Some consequences of perinatal lesions of the visual cortex in the cat. Psychon. Sci. 3, 381–382 (1965).

    Google Scholar 

  • Weymouth, F.W.: Visual sensory units and the minimum angle of resolution. Amer. J. Ophthal. 24, 1255–1264 (1958).

    Google Scholar 

  • White, C.T., Cheatham, P. G.: Temporal numerosity: IV. A comparison of the major senses. J. exp. Psychol. 58, 441–444 (1959).

    PubMed  CAS  Google Scholar 

  • Wiesel, T.N., Hubel, D.H.: Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26, 1003–1017 (1963).

    PubMed  CAS  Google Scholar 

  • Wilson, M.E.: Cortico-cortical connections of the cat visual areas. J. Anat. 102, 375–387 (1968).

    PubMed  CAS  Google Scholar 

  • Wilson, M.E., Cragg, B.G.: Projections from the lateral geniculate nucleus in the cat and the monkey. J. Anat. 101, 679–695 (1967).

    Google Scholar 

  • Winans, S. S.: Visual form discrimination after removal of the visual cortex in cats. Science 158, 944–946 (1967).

    PubMed  CAS  Google Scholar 

  • Wright, M. J.: Visual receptive fields of cells in a cortical area remote from the striate cortex of the cat. Nature (Lond.) 223, 973–975 (1969).

    CAS  Google Scholar 

  • Wurtz, R.H.: Visual receptive fields of striate cortex neurones in awake monkeys. J. Neurophysiol. 32, 727–742 (1969 a).

    PubMed  CAS  Google Scholar 

  • Wurtz, R.H., Responses of striate cortex neurones to stimuli during rapid eye movements in the monkey. J. Neurophysiol. 32, 975–986 (1969 b).

    PubMed  CAS  Google Scholar 

  • Wurtz, R.H., Comparison of effects of eye movements and stimulus movements on striate cortex neurones of the monkey. J. Neurophysiol. 32, 987–994 (1969 c).

    PubMed  CAS  Google Scholar 

  • Zeki, S.M.: Visual deficits related to size of lesion in ‘pre-striate’ cortex of optic chiasm- sectioned monkeys. Life Sci. 6, 1627–1638 (1967).

    PubMed  CAS  Google Scholar 

  • Zeki, S.M., The secondary visual areas of the monkey. Brain Res. 13, 197–226 (1969 a).

    PubMed  CAS  Google Scholar 

  • Zeki, S.M., Representation of central visual fields in prestriate cortex of monkey. Brain Res. 14, 271 to 291 (1969 b).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Richard Jung

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer-Verlag, Berlin · Heidelberg

About this chapter

Cite this chapter

Stone, J., Freeman, R.B. (1973). Neurophysiological Mechanisms in the Visual Discrimination of Form. In: Jung, R. (eds) Central Processing of Visual Information A: Integrative Functions and Comparative Data. Handbook of Sensory Physiology, vol 7 / 3 / 3 A. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65352-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65352-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65354-4

  • Online ISBN: 978-3-642-65352-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation