Effects of Toxicants on Aquatic Populations

  • Chapter
Applied Mathematical Ecology

Part of the book series: Biomathematics ((BIOMATHEMATICS,volume 18))

Abstract

In the United States, the Environmental Protection Agency regulates chemicals under several legislative acts, two of which are the Toxic Substances Control Act (TSCA) and the Federal Insecticides, Fungicides, and Rodenticides Act (FIFRA). The Agency regulates chemicals under these acts using, in part, the assessment of risks both to humans and to the environment. A scientifically based methodology of high utility to assist in evaluating environmental risk posed by the introduction of chemicals is currently under development. The purpose of this article is to provide indications of past developments, of current theoretical research, and of directions of environmental risk assessment of chemical stress on populations. Fate and effects at the community and ecosystem level are, at this stage, only speculative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Barber, M.C., Suarez, L.A., Lassiter, R.R. (1988) Modeling bioconcentration of nonpolar organic pollutants by fish. Envir. Tox. Chem. 7:545–558

    Article  Google Scholar 

  • Bartell, S.M., Gardner, R.H., O’Neill, R.V., Giddings, J.M. (1983) Error analysis of predicted fate of anthracene in a simulated pond. Envir. Tox. Chem. 2, 19–28

    Article  Google Scholar 

  • Beverton, R.J.H., Holt, S.J., (1957) On the dynamics of exploited fish populations. U.K. Min. Agric. and Fish. Fish. Invest. Ser 2, 19

    Google Scholar 

  • Brockway, D.L. (1972) The uptake, storage and release of dieldrin and some effects of its release in the fish cichlasoma bimaculatum (Linnaeus). Dissertation, University of Michigan, Ann Arbor, MI

    Google Scholar 

  • Buikema, A.L., Jr. (1972) Oxygen consumption of cladoceran daphnia pulex, as a function of body size, light, and acclimation. Comp. Biochem. Physiol. 42A, 877–888

    Article  Google Scholar 

  • De Roos, A. (1987) Numerical methods for structured population models. The escalator boxcar train. Num. Methods Part. Diflf. Equations (to appear)

    Google Scholar 

  • Edwards, N.T., Ross-Todd, B.M., Garver, E.G. (1982) Uptake and metabolism of 14C-anthracene by soybean (Glycine S.), Environ. Exptl. Botany 22, 349–357

    Article  Google Scholar 

  • Frauenthal, J.C. (1986) Analysis of age-structure models. In: Hallam, T.G., Levin, S.A. (eds.) Mathematical Ecology: An Introduction Biomathematics, vol. 17. Springer Berlin Heildelberg New York London Paris Tokyo pp. 117–148

    Google Scholar 

  • Gabriel, W. (1982) Modelling reproductive strategies of Daphnia. Arch. Hydrobiol. 95, 69–80

    Google Scholar 

  • Gardner, R.H., Cale, W.G., O’Neill, R.V. (1982) Robust analysis of aggregation error. Ecology 63, 1771–1779

    Article  Google Scholar 

  • Gerritsen, J. (1984) Size efficiency reconsidered: A general foraging model for free swimming aquatic animals. Am. Nat. 123, 450–467

    Article  Google Scholar 

  • Goulden, C.E., Comotto, R.M., Hendrickson, Jr., J.A., Hornig, L.L., Johnson, K.L. (1982) Procedures and recommendations for the culture and use of Daphnia in bioassay studies. In: Pearson, J.G., Foster, R.B., Bishop, W.E. (eds.) Aquatic Toxicology and Hazard Assessment: Fifth Conference. ASTM STP 766. American Society for Testing and Materials, Washington, D.C., pp. 139–160

    Google Scholar 

  • Goulden, C.E., Henry, L.L. (1982) Lipid energy reserves and their role in Cladocera. Am. Assoc. Adv. Sci. Symp.

    Google Scholar 

  • Halbach, U., Siebert, M., Westermayer, M., Wissel, C. (1983) Population ecology of rotifers as a bioassay tool for ecological tests in aquatic environments. Ecotox. and Envir. Safety. 7, 484–513

    Article  Google Scholar 

  • Hallam, T.G., de Luna, J.L. (1984) Effects of toxicants on population: A qualitative approach III. Environmental and food chain pathways. J. theor. Biol. 109, 411–429

    Article  Google Scholar 

  • Hallam, T.G., Lassiter, R.R., Li, J., Suarez, L.A. (1989) Modelling individuals employing an integrated energy response: Application to Daphnia Ecology (to appear)

    Google Scholar 

  • Hastings, A. (1983) Age dependent predation is not a simple process. I. Continuous time models. Theor. Popul. Biol. 23, 347–362

    Google Scholar 

  • Karickhoft S.W. (1981) Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils. Chemosphere 10(8), 833–846

    Article  Google Scholar 

  • Konemann, H. (1981) Quantitative structure activity relationships in fish toxicity studies. Part I. Relationship for 50 industrial pollutants. Toxicology 19, 209–221

    Article  Google Scholar 

  • Kooijman, S.A.L.M. (1986a) Population dynamics on basis of budgets. In: Metz, J.A.J., Dickmann, O. (eds.) The Dynamics of Physiologicaly Structured Populations Lecture Notes in Biomathematics, vol. 68. Springer, Berlin Heidelberg New York London Paris Tokyo, pp. 266–297

    Google Scholar 

  • Kooijman, S.A.L.M. (1986b) What the hen can tell about her eggs: Egg development on the basis of energy budgets. J. Math. Biol. 23, 163–185

    Article  MathSciNet  Google Scholar 

  • Kooijman, S.A.L.M. (1986c) Energy budgets can explain body size relations. J. theor. Biol. 121, 269–282

    Article  Google Scholar 

  • Kooijman, S.A.L.M., Metz, J.A.J. (1984) On the dynamics of chemically stressed populations: The deduction of population consequences from effects on individuals. Ecotoxicology and Environmental Safety 8, 254–274

    Article  Google Scholar 

  • Kooijman, S.A.L.M., van der Hoeven, N., van der Werf, D.C. (1987) Population consequences of a physiological model for individuals (to appear)

    Google Scholar 

  • Lassiter, R.R. (1986) A theoretical basis for modeling element cycling. In: Hallam, T.G., Levin, S.A. (eds.) Mathematical Ecology: An Introduction. Biomathematics, vol. 17. Springer, Berlin Heidelberg New York London Paris Tokyo, pp. 341–380

    Google Scholar 

  • Lassiter, R.R., Hallam, T.G. (1989) Survival of the fattest: A theory for assessing acute effects of hydrophobic, reversibly acting chemicals on populations. Envir. Toxicol. Chem. (to appear)

    Google Scholar 

  • Li, Jia (1987) Persistence and extinction of populations. Dissertation. University of Tennessee, Knoxville, TN

    Google Scholar 

  • Lynch, M., Weider, L.J., Lampert, W. (1986) Measurement of the carbon balance in Daphnia. Limnol. Oceanogr. 31(1), 17–33

    Article  Google Scholar 

  • McKendrick, A.G. (1926) Application of mathematics to medical problems. Proc. Edinb. Math. Soc. 44, 98–130.

    Article  Google Scholar 

  • Metz, J.A.J., Diekmann, O. (1986) The dynamics of physiologically structured populations. Lecture Notes in Biomathematics, vol. 68. Springer, Berlin Heidelberg New York London Paris Tokyo

    Google Scholar 

  • Newsholme, E.A., Start, C. (1973) Regulation in Metabolism. Wiley, New York

    Google Scholar 

  • Nisbet, R.M., Gurney, W.S.C. (1986) The formulation of age-structure models. In: Hallam, T.G., Levin, S.A. (eds.) Mathematical Ecology: An Introduction. Biomathematics, vol. 17. Springer, Berlin Heidelberg New York London Paris Tokyo, pp. 95–116

    Google Scholar 

  • O’Neill, R.V., Gardner, R.H., Barnthouse, L.W., Suter, G.W., Hildebrand, S.G., Gehrs, C.W. (1982) Ecosystem risk analysis: A new methodology. Envir. Toxicol. Chem. 1, 167–177

    Article  Google Scholar 

  • Paloheimo, J.E., Crabtree, S.J., Taylor, W.D. (1982) Growth model of Daphnia. Can. J. Fish. Aquat. Sci. 39, 598–606

    Article  Google Scholar 

  • Randle, P.J., Garland, P.B., Hales, C.N., Newsholme, E.A. (1963) The glucose fattyacid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitins. Lancet 1, 785

    Article  Google Scholar 

  • Rashevsky, N.F. (1959) Some remarks on the mathematical theory of nutrition of fishes. Bull. Math. Biophys. 21, 161–183

    Article  Google Scholar 

  • Richman, S. (1958) The transformatin of energy by Daphnia pulex. Ecol. Monogr. 28, 273–291

    Article  Google Scholar 

  • Ricker, W.E. (1954) Stock and recruitment. J. Fish Res. Bd. Can. 5(15), 991–1006

    Google Scholar 

  • Sinko, J.W., Streifer, W. (1967) A new model for age-size structure of a population. Ecology 48, 910–918

    Article  Google Scholar 

  • Slooff, W. (1985) The role of multispecies testing in aquatic toxicology. In: Cairns, J. (ed.) Multispecies Toxicity Testing. Pergamon, New York

    Google Scholar 

  • Smith, F.E. (1963) Population dynamics in Daphnia magna and a new model for population growth. Ecology 44, 651–663

    Article  Google Scholar 

  • Swenson, W.A., Lloyd, L., Smith, Jr. (1973) Gastric digestion, food consumption, feeding periodicity, and food conversion efficiency in walleye (Stizostedion vitreum vitreum). J. Fish. Res. Bd. Can. 30(9), 1327–1336

    Article  Google Scholar 

  • Taylor, B.E. (1986) Effects of food limitation on growth and reproduction of Daphnia. Arch. Hydrobiol. Beih. Ergebn. Limnol. 21, 285–296

    Google Scholar 

  • Tessier, A.J., Goulden, C.E. (1987) Cladoceran juvenile growth: Implications for competitive ability (to appear)

    Google Scholar 

  • Thieme, H.R. (1986) A differential-integral equation modelling the dynamics of populations with a rank structure. In: Metz, J.A.J., Diekmann, O. (eds.) The Dynamics of Physiologically structured populations. Lecture Notes in Biomathematics, vol. 68. Springer, Berlin Heidelberg New York London Paris Tokyo, pp. 496–511

    Google Scholar 

  • van Cappelleveen, E. (1987) Ecotoxicity of heavy metals for terrestrial isopods. Ph.D. Thesis, Free University, Amsterdam

    Google Scholar 

  • Vaughan, B.E., et al. (1982) Pacific Northwest Laboratory Annual Report for 1981 to the DOE Office of Energy Research, Part 2. Ecological Research. PNL-4100, Pt. 2. 59–63. Battelle, Richland Washington

    Google Scholar 

  • Veith, G.D., Call, D.J., Brooke, L.T. (1983) Structure-toxicity relationships for the fathead minnow, Pimephales promelas: narcotic industrial chemicals. Can. J. Fish. Aquat. Sci. 40, 743–748

    Article  Google Scholar 

  • von Foerster, H. (1959) Some remarks on changing populations. In: Stohlmann, F. (ed.) The Kinetics of Cellular Proliferation. Grune and Stratton, New York

    Google Scholar 

  • Wallis, I.G. (1975) Modelling the impact of waste on a stable fish population. Water Research 9, 1025–1036

    Article  Google Scholar 

  • Zonneveld, C., Kooijman, S.A.L.M. (1987) The application of a dynamical energy budget model to the pondsnail Hymnaea stagnalis (to appear)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hallam, T.G., Lassiter, R.R., Kooijman, S.A.L.M. (1989). Effects of Toxicants on Aquatic Populations. In: Levin, S.A., Hallam, T.G., Gross, L.J. (eds) Applied Mathematical Ecology. Biomathematics, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61317-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61317-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64789-5

  • Online ISBN: 978-3-642-61317-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation