Vascular Smooth Muscle

  • Chapter
Comprehensive Human Physiology
  • 49 Accesses

Abstract

Smooth Muscle Tissue. The visceral mesenchyma (splanchnopleura) is the principal source for smooth muscle tissue. It also forms the layer-shaped muscle and connective tissue strata of the vessel walls. The vascular system of the human embryo develops from blood islets in the middle of the third week, shortly before somite formation, when the embryo can no longer meet its nutritional demand merely by diffusion. Cardiac muscle, similar to vascular musculature, develops from the mesenchymal mantle which surrounds the early-embryonic endothelial heart tube.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

General References

  1. Bernard C (1878) Leçons sur les phénomènes de la Vie Commune aux animaux et aux végétaux. Baillière, Paris

    Google Scholar 

  2. Betz E, Reutter K, Mecke D, Ritter H (1991) Biologie des Menschen. Quelle and Meyer, Heidelberg

    Google Scholar 

  3. Bevan JA, Halpern W, Mulvany MJ (eds) (1991) The resistance vasculature. Humana, Totowa

    Google Scholar 

  4. Brann MR (ed) (1992) Molecular biology of G-protein-coupled receptors. Birkhäuser, Boston

    Google Scholar 

  5. Bülbring E, Brading AF, Jones AW, Tomita T (eds) (1970) Smooth muscle. Edward Arnold, London

    Google Scholar 

  6. Campbell PN, Marshall RD (eds) (1985) Essays in biochemistry, vol 20. Academic, London

    Google Scholar 

  7. Crass MF 111, Barnes CD (eds) (1982) Vascular smooth muscle: metabolic, ionic, and contractile mechanisms. Academic, New York

    Google Scholar 

  8. Keatinge WR, Harman MC (1980) Local mechanisms controlling blood vessels. Academic, London

    Google Scholar 

  9. Levick JR (1991) An introduction to cardiovascular physiology. Butterworths, London

    Google Scholar 

  10. Milnor WR (1990) Cardiovascular physiology. Oxford University Press, New York

    Google Scholar 

  11. Rubanyi GM, Vanhoutte PM (eds) (1990) Endothelium-derived relaxing factors. Karger, Basel

    Google Scholar 

  12. Rubanyi GM, Vanhoutte PM (eds) (1990) Endothelium-derived contracting factors. Karger, Basel

    Google Scholar 

  13. Rüegg JC (1986) Calcium in muscle activation. A comparative approach. Springer, Berlin Heidelberg New York

    Google Scholar 

  14. Sperelakis N, Kuriyama H (eds) (1991) Ion channels of vascular smooth muscle cells and endothelial cells. Elsevier, New York

    Google Scholar 

  15. Sperelakis N, Wood JD (eds) (1990) Frontiers in smooth muscle research. Wiley-Liss, New York

    Google Scholar 

  16. Stephens NL (ed) (1977) The biochemistry of smooth muscle. University Park Press, Baltimore

    Google Scholar 

Specific References

  1. Ahlquist RP (1948) A study of the adrenotropic receptors. Am J Physiol 153:586–600

    PubMed  CAS  Google Scholar 

  2. Babij P, Periasamy M (1989) Myosin heavy chain isoform diversity in smooth muscle is produced by differential RNA processing. J Mol Biol 210:673–679

    Article  PubMed  CAS  Google Scholar 

  3. Bean BP (1989) Classes of calcium channels in vertebrate cells. Annu Rev Physiol 51:367–384

    Article  PubMed  CAS  Google Scholar 

  4. Bevan JA (1995) The role of flow-induced contraction and relaxation in the regulation of vascular tone. Results of in vitro studies. In: Bevan JA, Kaley G, Rubanyi G (eds) Flow-dependent regulation of vascular function. Oxford University Press, New York, pp 128–152

    Chapter  Google Scholar 

  5. Bevan JA, Laher I (1991) Pressure and flow-dependent vascular tone. FASEB J 5:2267–2273

    PubMed  CAS  Google Scholar 

  6. Boels PJ, Troschka M, Rüegg JC, Pfitzer G (1991) Higher Ca2+ sensitivity of triton-skinned guinea pig mesenteric microarteries as compared with large arteries. Circ Res 69:989–996

    Article  PubMed  CAS  Google Scholar 

  7. Brayden JE, Nelson MT (1992) Regulation of arterial tone by activation of calcium-dependent potassium channels. Science 256:532–535

    Article  PubMed  CAS  Google Scholar 

  8. Breemen C van, Saida K (1989) Cellular mechanisms regulating [Ca2+]i smooth muscle. Annu Rev Physiol 51:315–329

    Article  PubMed  Google Scholar 

  9. Brown AM (1991) A cellular logic for G protein-coupled ion channel pathways. FASEB J 5:2175–2179

    PubMed  CAS  Google Scholar 

  10. Bülbring Edith, Lüllmann H (1957) The effect of metabolic inhibitors on the electrical and mechanical activity of the smooth muscle of the guinea-pig’s taenia coli. J Physiol (Lond) 136:310–323

    Google Scholar 

  11. Collins S, Bolanowski MA, Caron MG, Lefkowitz RJ (1989) Genetic regulation of ß-adrenergic receptors. Annu Rev Physiol 51:203–215

    Article  PubMed  CAS  Google Scholar 

  12. Cross RA, Engel A (1991) Scanning transmission electron microscopic mass determination of in vitro self-assembled smooth muscle myosin filaments. J Mol Biol 222:455–458

    Article  PubMed  CAS  Google Scholar 

  13. Davies NW (1990) Modulation of ATP-sensitive K+ channels in skeletal muscle by intracellular protons. Nature 343:375–377

    Article  PubMed  CAS  Google Scholar 

  14. Dressler KA, Mathias S, Kolesnick RN (1992) Tumor necrosis factor-α activates the sphingomyelin signal transduction pathway in a cell-free system. Science 255:1715–1718

    Article  PubMed  CAS  Google Scholar 

  15. Eigler A, Sinha B, Endres S (1993) Nitric oxide-releasing agents enhance cytokine-induced tumor necrosis factor synthesis in human mononuclear cells. Biochem Biophys Res Commun 196:494–501

    Article  PubMed  CAS  Google Scholar 

  16. Fewtrell C (1993) Ca2+ oscillations in non-excitable cells. Annu Rev Physiol 55:427–454

    Article  PubMed  CAS  Google Scholar 

  17. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    Article  PubMed  CAS  Google Scholar 

  18. Gilbert EK, Weaver BA, Rembold CM (1991) Depolarization decreases the [Ca2+]i sensitivity of myosin light-chain kinase in arterial smooth muscle: comparison of aequorin and fura 2 [Ca2+]i estimates. FASEB J 5:2593–2599

    PubMed  CAS  Google Scholar 

  19. Goldman DE (1943) Potential, impedance, and rectification in membranes. J Gen Physiol 27:37–60

    Article  PubMed  CAS  Google Scholar 

  20. Gollasch M, Hescheler J, Quayle JM, Patlak JB, Nelson MT (1992) Single calcium channel currents of arterial smooth muscle at physiological calcium concentrations. Am J Physiol 263:C948–C952

    PubMed  CAS  Google Scholar 

  21. Hai C-M, Murphy RA (1989) Ca2+, crossbridge phosphorylation, and contraction. Annu Rev Physiol 51:285–298

    Article  PubMed  CAS  Google Scholar 

  22. Harder DR (1984) Pressure-dependent membrane depolarization in cat middle cerebral artery. Circ Res 55:197–202

    Article  PubMed  CAS  Google Scholar 

  23. Harder DR, Gilbert R, Lombard JH (1987) Vascular muscle cell depolarization and activation in renal arteries on elevation of transmural pressure. Am J Physiol 253:F778–F781

    PubMed  CAS  Google Scholar 

  24. Hescheler J, Schultz G (1993) G-proteins involved in the calcium channel signalling system. Curr Opin Neurobiol 3:360–367

    Article  PubMed  CAS  Google Scholar 

  25. Hirst GDS, Edwards FR (1989) Sympathetic neuroeffector transmission in arteries and arterioles. Physiol Rev 69:546–604

    PubMed  CAS  Google Scholar 

  26. Kamm KE, Stull JT (1989) Regulation of smooth muscle contractile elements by second messengers. Annu Rev Physiol 51:299–313

    Article  PubMed  CAS  Google Scholar 

  27. Khayutin VM, Nikolsky VP, Rogoza AN, Lukoshkova EV (1993) Endothelium determines stabilization of the pressure drop in arteries. Acta Physiol Scand 148:295–304

    Article  PubMed  CAS  Google Scholar 

  28. Kirber MT, Walsh JV Jr, Singer JJ (1988) Stretch-activated ion channels in smooth muscle: a mechanism for the initiation of stretch-induced contraction. Pflugers Arch 412:339–345

    Article  PubMed  CAS  Google Scholar 

  29. Läuger P, Apell H-J (1988) Transient behaviour of the Na+/K+-pump: microscopic analysis of nonstationary ion-translocation. Biochim Biophys Acta 944:451–464

    Article  PubMed  Google Scholar 

  30. Lefkowitz RJ, Caron MG (1988) Adrenergic receptors. J Biol Chem 263:4993–4996

    PubMed  CAS  Google Scholar 

  31. Lin HY, Harris TL, Flannery MS, Aruffo A, Kaji EH, Gorn A, Kolakowski LF Jr, Lodish HF, Goldring SR (1991) Expression cloning of an adenylate cyclase-coupled calcitonin receptor. Science 254:1022–1024

    Article  PubMed  CAS  Google Scholar 

  32. Linden J (1991) Structure and function of A1 adenosine receptors. FASEB J 5:2668–2676

    PubMed  CAS  Google Scholar 

  33. Loirand G, Pacaud P, Mironneau C, Mironneau J (1990) GTP-binding proteins mediate noradrenaline effects on calcium and chloride currents in rat portal vein myocytes. J Physiol (Lond) 428:517–529

    CAS  Google Scholar 

  34. Mulvany MJ, Aalkjær C (1990) Structure and function of small arteries. Physiol Rev 70:921–961

    PubMed  CAS  Google Scholar 

  35. Mulvany MJ, Nilsson H, Flatman JA (1982) Role of membrane potential in the response of rat small mesenteric arteries to exogenous noradrenaline stimulation. J Physiol (Lond) 332:363–373

    CAS  Google Scholar 

  36. Murphy RA (1989) Special topic: contraction in smooth muscle cells. Annu Rev Physiol 51:275–283

    Article  PubMed  CAS  Google Scholar 

  37. Nelson MT (1993) Ca2+-activated potassium channels and ATP-sensitive potassium channels as modulators of vascular tone. Trends Cardiovasc Med 3:54–60

    Article  PubMed  CAS  Google Scholar 

  38. Nelson MT, Huang Y, Brayden JE, Hescheler J, Standen NB (1990) Arterial dilations in response to calcitonin gene-related peptide involve activation of K+ channels. Nature 344:770–773

    Article  PubMed  CAS  Google Scholar 

  39. Nelson MT, Patlak JB, Worley JF, Standen NB (1990) Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am J Physiol 259:C3–C18

    PubMed  CAS  Google Scholar 

  40. Nelson MT, Standen NB, Brayden JE, Worley JF III (1988) Noradrenaline contracts arteries by activating voltage-dependent calcium channels. Nature 336:382–385

    Article  PubMed  CAS  Google Scholar 

  41. Nernst W (1889) Die elektromotorische Wirksamkeit der Ionen. Z Phys Chem Frankfurt 4:129–181

    Google Scholar 

  42. Noma A (1983) ATP-regulated K+ channels in cardiac muscle. Nature 305:147–148

    Article  PubMed  CAS  Google Scholar 

  43. Nyborg NCB, Mulvany MJ (1984) Effect of felodipine, a new dihydropyridine vasodilator, on contractile responses to potassium, noradrenaline, and calcium in mesenteric resistance vessels of the rat. J Cardiovasc Pharmacol 6:499–505

    Article  PubMed  CAS  Google Scholar 

  44. Oguchi A, Ikeda U, Kanbe T, Tsuruya Y, Yamamoto K, Kawakami K, Medford RM, Shimada K (1993) Regulation of Na-K-ATPase gene expression by aldosterone in vascular smooth muscle cells. Am J Physiol 265:H1167–H1172

    PubMed  CAS  Google Scholar 

  45. Paul RJ (1989) Smooth muscle energetics. Annu Rev Physiol 51:331–349

    Article  PubMed  CAS  Google Scholar 

  46. Post RL (1989) Seeds of sodium, potassium ATPase. Annu Rev Physiol 51:1–15

    Article  PubMed  CAS  Google Scholar 

  47. Regan JW, Cotecchia S (1992) The α-adrenergic receptors: new subtypes, pharmacology, and coupling mechanisms. In: Brann MR (ed) Molecular biology of G-protein-coupled receptors. Birkhäuser, Boston, pp 76–112

    Chapter  Google Scholar 

  48. Robishaw JD, Foster KA (1989) Role of G proteins in the regulation of the cardiovascular system. Annu Rev Physiol 51:229–244

    Article  PubMed  CAS  Google Scholar 

  49. Rüegg U (1987) Kalziumtransport durch Membranen. Sandorama 2:15–20

    Google Scholar 

  50. Ruzycky AL, Morgan KG (1989) Involvement of the protein kinase C system in calcium-force relationships in ferret aorta. Br J Pharmacol 97:391–400

    Article  PubMed  CAS  Google Scholar 

  51. Schatzmann HJ (1989) The calcium pump of the surface membrane and of the sarcoplasmic reticulum. Annu Rev Physiol 51:473–485

    Article  PubMed  CAS  Google Scholar 

  52. Schwarz G, Callewaert G, Droogmans G, Nilius B (1992) Shear stress-induced calcium transients in endothelial cells from human umbilical cord veins. J Physiol (Lond) 458:527–538

    CAS  Google Scholar 

  53. Schwarz G, Droogmans G, Nilius B (1992) Shear stress induced membrane currents and calcium transients in human vascular endothelial cells. Pflugers Arch 421:394–396

    Article  PubMed  CAS  Google Scholar 

  54. Siegel G, Bevan JA (1995) Anionic biopolyelectrolytes as sensors of blood flow. In: Bevan JA, Kaley G, Rubanyi G (eds) Flow-dependent regulation of vascular function. Oxford University Press, New York, pp 153–162

    Google Scholar 

  55. Siegel G, Carl A, Adler A, Stock G (1989) Effect of the prostacyclin analogue iloprost on K+ permeability in the smooth muscle cells of the canine carotid artery. Eicosanoids 2:213–222

    PubMed  CAS  Google Scholar 

  56. Siegel G, Ebeling BJ, Hofer HW (1980) Foundations of vascular rhythm. Ber Bunsenges Phys Chem 84:403–406

    Article  CAS  Google Scholar 

  57. Siegel G, Hofer HW, Walter A, Rückborn K, Schnalke F, Koepchen HP (1991) Autorhythmicity in blood vessels: its biophysical and biochemical bases. Springer Series Synerget 55:35–60

    Article  Google Scholar 

  58. Siegel G, Schnalke F, Schaarschmidt J, Müller J, Hetzer R (1991) Hypoxia and vascular muscle tone in normal and arteriosclerotic human coronary arteries. J Vase Med Biol 3:140–149

    Google Scholar 

  59. Siegel G, Walter A, Bostanjoglo M, Jans AWH, Kinne R, Piculell L, Lindman B (1989) Ion transport and cation-polyanion interactions in vascular biomembranes. J Membr Sci 41:353–375

    Article  CAS  Google Scholar 

  60. Siegel G, Walter A, Rückborn K, Buddecke E, Schmidt A, Gustavsson H, Lindman B (1991) NMR studies of cation induced conformational changes in anionic biopolymers at the endothelium-blood interface. Polymer J 23:697–708

    Article  CAS  Google Scholar 

  61. Sobieszek A (1991) Regulation of smooth muscle myosin light chain kinase. Allosteric effects and co-operative activation by calmodulin. J Mol Biol 220:947–957

    Article  PubMed  CAS  Google Scholar 

  62. Sreedharan SP, Robichon A, Peterson KE, Goetzl EJ (1991) Cloning and expression of the human vasoactive intestinal peptide receptor. Proc Natl Acad Sci USA 88:4986–4990

    Article  PubMed  CAS  Google Scholar 

  63. Trayer IP (1994) Hands across the divide. Nature 368:294–295

    Article  PubMed  CAS  Google Scholar 

  64. Ueyama H, Hamada H, Battula N, Kakunaga T (1984) Structure of a human smooth muscle actin gene (aortic type) with a unique intron site. Mol Cell Biol 4:1073–1078

    PubMed  CAS  Google Scholar 

  65. Vorherr T, Kessler T, Hofmann F, Carafoli E (1991) The calmodulin-binding domain mediates the self-association of the plasma membrane Ca2+ pump. J Biol Chem 266:22–27

    PubMed  CAS  Google Scholar 

  66. Warrick HM, Spudich JA (1987) Myosin structure and function in cell motility. Annu Rev Cell Biol 3:379–421

    Article  PubMed  CAS  Google Scholar 

  67. Worley JF, Quayle JM, Standen NB, Nelson MT (1991) Regulation of single calcium channels in cerebral arteries by voltage, serotonin, and dihydropyridines. Am J Physiol 261:H1951–H1960

    PubMed  CAS  Google Scholar 

  68. **e X, Harrison DH, Schlichting I, Sweet RM, Kalabokis VN, Szent-Györgyi AG, Cohen C (1994) Structure of the regulatory domain of scallop myosin at 2.8 Å resolution. Nature 368:306–312

    Article  PubMed  CAS  Google Scholar 

  69. Zelcer E, Sperelakis N (1982) Spontaneous electrical activity in pressurized small mesenteric arteries. Blood Vessels 19:301–310

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Siegel, G. (1996). Vascular Smooth Muscle. In: Greger, R., Windhorst, U. (eds) Comprehensive Human Physiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60946-6_97

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60946-6_97

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64619-5

  • Online ISBN: 978-3-642-60946-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation