Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 124 / 1))

Abstract

Since the evolution of the cellular phenotype, prokaryotic and eukaryotic cells have had to cope with adverse changes in their environment. Although cells have evolved many distinct stress responses, this chapter will focus on three major, highly conserved, response systems, i.e., the genotoxic response system, which is activated by DNA damage; the oxidative stress response system, which is activated by excess reactive oxygen species (ROS) and imbalances in the oxidant/antioxidant status within cells; and the heat shock response, which is activated by exposure to heat and other agents that adversely affect protein folding (Fig. 1). The sections dealing with each of the stress response systems begin with a description of the prokaryotic stress response because, in most instances, the prokaryotic systems are the best understood. This is followed by a discussion of the eukaryotic stress response systems, focusing on yeast and mammals. Finally, each section concludes with a discussion about what is known concerning the induction of these stress response systems in mammalian embryos, particularly postimplantation mammalian embryos. Normal embryonic development requires a precisely orchestrated chain of temporal and spatial events, and any alterations in this chain could lead to altered development and subsequent pathogenesis. Although the mammalian embryo develops within the protective environment of the uterus, this protection is not absolute and we now know that mammalian development can be perturbed by a wide variety of chemical and physical agents, many of which are known to induce one or more of these stress systems in nonembryonic systems. Thus understanding the embryo’s stress response capabilities is essential to the understanding of how developmental toxicants exert their toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abbott BD, Perdew GH, Birnbaume LS (1994) Ah receptor in embryonic mouse palate and effects of TCDD on receptor expression. Toxicol Appl Pharmacol 126:16–25

    Article  PubMed  CAS  Google Scholar 

  • Aggeler J, Murnane JP (1990) Enhanced expression of procollagenase in ataxia-telangiectasia and xeroderma pigmentosum fibroblasts. In vitro Cell Dev Biol 26: 915–922

    Article  PubMed  CAS  Google Scholar 

  • Anderson CW (1993) DNA damage and the DNA-activated protein kinase. Trends Biochem Sci 18:433-437

    Article  PubMed  CAS  Google Scholar 

  • Anderson RL, Van-Kersen I, Kraft PE, Hahn GM (1989) Biochemical analysis of heat resistant mouse tumor cell strains: a new member of the HSP70 family. Mol Cell Biol 9: 3509–3516

    PubMed  CAS  Google Scholar 

  • Angelidis CE, Lazaridis I, Pagoulatos GN (1991) Constitutive expression of heat shock protein 70 in mammalian cells confers thermoresistance. Eur J Biochem 199: 35–39

    Article  PubMed  CAS  Google Scholar 

  • Anson JF, Hinson WG, Pikin JL, Kwarta RF, Hansen DK, Young JF, Burns ER, Casciano DA (1987) Retinoic acid induction of stress proteins in fetal mouse limb buds. Dev Biol 121: 542–547

    Article  PubMed  CAS  Google Scholar 

  • Anson JF, Laborde JB, Pipkin JL, Hinson WJ, Hansen DK, Sheehan DM, Young JF (1991) Target tissue specificity of retinoic acid-induced stress proteins and malformations in mice (see comments). Teratology 44: 19–28

    Article  PubMed  CAS  Google Scholar 

  • Applegate LA, Luscher P, Tyrrell RM (1991) Induction of heme oxygenase: a general response to oxidant stress in cultured mammalian cells. Cancer Res 51: 974–978

    PubMed  CAS  Google Scholar 

  • Bauman JW, Liu J, Liu YP, Klaassen CD (1991) Increase in metallothionein produced by chemicals that induce oxidative stress. Tox Appl Pharmacol 110: 347–354

    Article  CAS  Google Scholar 

  • Bennett GD, Mohl VK, Finnell RH (1990) Embryonic and maternal heat shock responses to a teratogenic hyperthermic insult. Reprod Toxicol 4: 113–119

    Article  PubMed  CAS  Google Scholar 

  • Bensaude O, Babinet C, Morange M, Jacob F (1983) Heat shock proteins, first major products of zygotic gene activity in mouse embryo. Nature 305: 331–333

    Article  PubMed  CAS  Google Scholar 

  • Bevilacqua A, Mangia P (1993) Activity of a microinjected inducible murine hsp68 gene promoter depends on plasmid configuration and the presence of heat shock elements in mouse dictyate oocytes but not in two-cell embryos. Dev Genet 14: 92–102

    Article  PubMed  CAS  Google Scholar 

  • Brach MA, Hass R, Sherman ML, Gunji H, Weichselbaum R, Kufe D (1991) Ionizing radiation induces expression and binding activity of the nuclear factor kappa B. J Clin Invest 88: 691–695

    Article  PubMed  CAS  Google Scholar 

  • Carper SW, Duffy JJ, Gerner EW (1987) Heat shock proteins in thermotolerance and other cellular processes. Cancer Res 47: 5249–5255

    PubMed  CAS  Google Scholar 

  • ChrĂ©tien P, Landry J (1988) Enhanced heat constitutive expression of the 27 Kda heat shock proteins in heat resistant variants from Chinese hamster cells. J Cell Physiol 137: 157–166

    Article  PubMed  Google Scholar 

  • Christians E, Campion E, Thompson EM, Renard JP (1995) Expression of the HSP 70.1 gene, a landmark of early zygotic activity in the mouse embryo, is restricted to the first burst of transcription. Development 121: 113–122

    PubMed  CAS  Google Scholar 

  • Christman MF, Morgan RW, Jacobson FS, Ames BN (1985) Positive control of a regulon for defense against oxidative stress and some heat shock proteins in Salmonella typhimurium. Cell 41: 753–762

    Article  PubMed  CAS  Google Scholar 

  • Christman MF, Storz G, Ames BN (1989) OxyR, a positive regulator of hydrogen peroxide-inducible genes in Escherichia coli and Salmonella typhimurium, is homologous to a family of bacterial regulatory proteins. Proc Natl Acad Sci USA 86: 3484–3488

    Article  PubMed  CAS  Google Scholar 

  • de Murcia G, Menissier-de-Murcia J, Schreiber V (1994) Poly(ADP-ribose) polymerase: a molecular nick-sensor [published erratum appears in Trends Biochem Sci 19: 250]. Trends Biochem Sci 19: 172–176

    Article  PubMed  Google Scholar 

  • el Hage S, Singh SM (1990) Temporal expression of genes encoding free radical-metabolizing enzymes is associated with higher mRNA levels during in utero development in mice. Dev Genet 11: 149–159

    Article  PubMed  Google Scholar 

  • Elledge SJ, Davis RW (1987) Identification and isolation of the gene encoding the small subunit of ribonucleotide reductase from Saccharomyces cerevisiae: DNA da-mage-inducible gene required for mitotic viability. Mol Cell Biol 7: 2783–2793

    PubMed  CAS  Google Scholar 

  • Erickson UJ, Borg LA (1993) Diabetes and embryonic malformations. Role of substrate-induced free-oxygen radical production for dysmorphogenesis in cultured rat embryos. Diabetes 42: 411–19

    Article  Google Scholar 

  • Evensen G, Seeberg E (1982) Adaptation to alkylation resistance involves the induction of a DNA glycosylase. Nature 296: 773–775

    Article  PubMed  CAS  Google Scholar 

  • Finnell RH, Van-Waes M, Bennett GD, Eberwine JH (1993) Lack of concordance between heat shock proteins and the development of tolerance to teratogen-in-duced neural tube defects. Dev Genet 14: 137–147

    Article  PubMed  CAS  Google Scholar 

  • Fisher BR, Kimmel GL, Kimmel CA, Heredia DJ (1991) The association of heat-induced alterations in protein synthesis with somite defects in rat embryos. Teratology 43: 465

    Google Scholar 

  • Fornace AJ Jr (1992) Mammalian genes induced by radiation; activation of genes associated with growth control. Annu Rev Genet 26: 507–526

    Article  PubMed  CAS  Google Scholar 

  • Fornace AJ Jr, Nebert DW, Hollander MC, Luethy JD, Papathanasiou M, Fargnoli J, Holbrook NJ (1989) Mammalian genes coordinately regulated by growth arrest signals and DNA-damaging agents. Mol Cell Biol 9: 4196–4203

    PubMed  CAS  Google Scholar 

  • Fornace AJ Jr, Jackman J, Hollander MC, Hoffman-Liebermann B, Liebermann DA (1992) Genotoxic-stress-response genes and growth-arrest genes, gadd, MyD, and other genes induced by treatments eliciting growth arrest. Ann NY Acad Sci 663: 139–153

    Article  PubMed  CAS  Google Scholar 

  • Franklin WA, Haseltine WA (1984) Removal of UV light-induced pyrimidine-pyr-imidone (6–4) products from Escherichia coli DNA requires the uvrA, uvrB, and uvrC gene products. Proc Natl Acad Sci USA 81:3821–3824

    Article  PubMed  CAS  Google Scholar 

  • Friedberg EC (1988) Deoxyribonucleic acid repair in the yeast Saccharomyces cerevisiae. Microbiol Rev 52:70–102

    PubMed  CAS  Google Scholar 

  • Georgopoulos C, Welch WJ (1993) Role of the major heat shock proteins as molecular chaperones. Annu Rev Cell Biol 9:601–634

    Article  PubMed  CAS  Google Scholar 

  • German J (1984) Embryonic stress hypothesis of teratogenesis. Am J Med 76:293–301

    Article  PubMed  CAS  Google Scholar 

  • German J, Louie E, Banerjee D (1986) The heat shock response in vivo: experimental induction during mammalian organogenesis. Teratog Carcinog Mutagen 6:555–562

    Article  PubMed  CAS  Google Scholar 

  • Gewirtz DA (1993) DNA damage, gene expression, growth arrest and cell death. Oncol Res 5: 397–408

    PubMed  CAS  Google Scholar 

  • Goff SA, Goldberg AL (1985) Production of abnormal proteins in E. coli stimulates transcription of Ion and other heat shock genes. Cell 41:587–595

    Article  PubMed  CAS  Google Scholar 

  • Greenberg JT, Demple B (1989) A global response induced in Escherichia coli by redox cycling agents overlaps with that induced by peroxide stress. J Bacteriol 171:3933–3939

    PubMed  CAS  Google Scholar 

  • Hahnel AC, Gifford DJ, Heikkila JJ, Schultz GA (1986) Expression of the major heat shock protein (hsp 70) family during early mouse embryo development. Teratog Carcinog Mutagen 6:493–510

    Article  PubMed  CAS  Google Scholar 

  • Hallahan DE, Spriggs DR, Bockett MA, Kufe DW, Weichselbaum RR (1989) Increased tumor necrosis factor alpha mRNA after cellular exposure to ionizing radiation. Proc Natl Acad Sci USA 86:10104–10107

    Article  PubMed  CAS  Google Scholar 

  • Hanawalt PC (1994) Transcription-coupled repair and human disease. Science 266:1957–1958

    Article  PubMed  CAS  Google Scholar 

  • Hansen DK, Anson JF, Hinson WG, Pipkin JL Jr (1988) Phenytoin-induced stress protein synthesis in mouse embryonic tissue. Proc Soc Exp Biol Med 189:136–140

    PubMed  CAS  Google Scholar 

  • Harris C, Juchau MR, Mirkes PE (1991) Role of glutathione and hsp 70 in the acquisition of thermotolerance in postimplantation rat embryos. Teratology 43:229–239

    Article  PubMed  CAS  Google Scholar 

  • Heikkila JJ (1993) Heat shock gene expression and development. II. An overview of mammalian and avian developmental systems. Dev Genet 14:87–91

    Article  PubMed  CAS  Google Scholar 

  • Hendrey J, Kola I (1991) Thermolability of mouse oocytes is due to the lack of expression and/or inducibility of Hsp 70. Mol Reprod Dev 28:1–8

    Article  PubMed  CAS  Google Scholar 

  • Herrlich P, Angel P, Rahmsdorf HJ, Mallick U, Poting A, Hieber L, Lucke-Huhle C, Schorpp M (1986) The mammalian genetic stress response. Adv Enzyme Regul 25:485–504

    Article  PubMed  CAS  Google Scholar 

  • Herrlich P, Sachsenmaier C, Radler-Pohl A, Gebel S, Bluttner C, Rahmsdorf HJ (1994) The mammalian UV response: mechanism of DNA damage induced gene expression. Adv Enzyme Regul 34:381–395

    Article  PubMed  CAS  Google Scholar 

  • Hidalgo E, Demple B (1994) An iron-sulfur center essential for transcriptional activation by the redox-sensing SoxR protein. EMBO J 13:138–146

    PubMed  CAS  Google Scholar 

  • Hightower LE (1980) Cultured animal cells exposed to amino acid analogues or pur-omycin rapidly synthesize several polypeptides. J Cell Physiol 102:407–427

    Article  PubMed  CAS  Google Scholar 

  • Higo H, Lee JY, Satow Y, Higo K (1989) Elevated expression of protooncogenes accompany enhanced induction of heat-shock genes after exposure of rat embryos in utero to ionizing radiation. Teratogen Carcinogen Mutagen 9:191–198

    Article  CAS  Google Scholar 

  • Holley JA, Janssen YM, Mossman BT, Taatjes DJ (1992) Increased manganese superoxide dismutase protein in type II epithelial cells of rat lungs after inhalation of crocidolite asbestos or cristobalite silica. Am J Pathol 141: 475–485

    PubMed  CAS  Google Scholar 

  • Honda K, Hatayama T, Takahashi K, Yukioka M (1991) Heat shock proteins in human and mouse embryonic cells after exposure to heat shock or teratogenic agents. Teratogen Carcinogen Mutagen 11:235–244

    Article  CAS  Google Scholar 

  • Jackman J, Alamo I Jr, Fornace AJ Jr (1994) Genotoxic stress confers preferential and coordinate messenger RNA stability on the five gadd genes. Cancer Res 54:5656–5662

    PubMed  CAS  Google Scholar 

  • Janssen YM, Marsh JP, Absher MP, Hemenway D, Vacek PM, Leslie KO, Born PJ, Mossman BT (1992) Expression of antioxidant enzymes in rat lungs after inhalation of asbestos or silica. J Biol Chem 267:10625–10630

    PubMed  CAS  Google Scholar 

  • Janssen YM, van-Houten B, Born PJ, Mossman BT (1993) Cell and tissue responses to oxidative damage. Lab Invest 69:261–274

    PubMed  CAS  Google Scholar 

  • Johnson AL, Barker DG, Johnston LH (1986) Induction of yeast DNA ligase genes in exponential and stationary phase cultures in response to DNA damaging agents. Curr Genet 11:107–112

    Article  PubMed  CAS  Google Scholar 

  • Johnston LH, White JH, Johnson AL, Lucchini G, Plevani P (1987) The yeast DNA polymerase I transcript is regulated in both the mitotic cell cycle and in meiosis and is also induced after DNA damage. Nucleic Acids Res 15:5017–5030

    Article  PubMed  CAS  Google Scholar 

  • Johnston RN, Kucey BL (1988) Competitive inhibition of hsp 70 gene expression causes thermosensitivity. Science 242:1551–1554

    Article  PubMed  CAS  Google Scholar 

  • Jornot L, Junod AF (1992) Response for human endothelial cell antioxidant enzymes to hyperoxia. Am J Respir Cell Mol Biol 6:107–115

    PubMed  CAS  Google Scholar 

  • Kam**a HH, Brunsting JF, Stege GJ, Konings AW, Landry J (1994) Cells over-expressing Hsp 27 show accelerated recovery from heat induced nuclear protein aggregation. Biochem Biophys Res Commun 204:1170–1177

    Article  PubMed  CAS  Google Scholar 

  • Kapron-Brás CM, Hales BF (1991) Heat-shock induced tolerance to the embryotoxic effects of hyperthermia and cadmium in mouse embryos in vitro. Teratology 43:83–94

    Article  PubMed  Google Scholar 

  • Kapron-Brás CM, Hales BF (1992) Genetic differences in heat-induced tolerance to cadmium in cultured mouse embryos are not correlated with changes in a 68-kD heat shock protein. Teratology 46:191–200

    Article  PubMed  Google Scholar 

  • Karran P, Hjelmgren T, Lindahl T (1982) Induction of a DNA glycosylase for N-methylated purines is part of the adaptive response to alkylating agents. Nature 296:770–773

    Article  PubMed  CAS  Google Scholar 

  • Kartasova T, van de Putte P (1988) Isolation, characterization, and UV-stimulated expression of two families of genes encoding polypeptides of related structure in human epidermal keratinocytes. Mol Cell Biol 8:2195–2203

    PubMed  CAS  Google Scholar 

  • Kataoka H, Sekiguchi M (1985) Molecular cloning and characterization of the alkB gene of Escherichia coli. Mol Gen Genet 198:263–269

    Article  PubMed  CAS  Google Scholar 

  • Kataoka H, Yamamoto Y, Sekiguchi M (1983) A new gene (alkB) of Escherichia coli that controls sensitivity to methyl methane sulfonate. J Bacteriol 153:1301–1307

    PubMed  CAS  Google Scholar 

  • Kelley PM, Schlesinger M J (1978) The effect of amino acid analogues and heat shock on gene expression in chicken embryo fibroblasts. Cell 15:1277–1286

    Article  PubMed  CAS  Google Scholar 

  • Kenyon CJ, Walker GC (1980) DNA-damaging agents stimulate gene expression at specific loci in Escherichia coli. Proc Natl Acad Sci USA 77:2819–2823

    Article  PubMed  CAS  Google Scholar 

  • Key se SM (1990) Oxidant stress lead to transcriptional activation of the human heme oxygenase gene in cultured cells. Mol Cell Biol 10:4967–4969

    PubMed  CAS  Google Scholar 

  • Keyse SM (1993) The induction of gene expression in mammalian cells by radiation. Cancer Biol 4:119–128

    CAS  Google Scholar 

  • Kimmel CA, Kimmel GL, Lu C, Heredia DJ, Fisher BR, Brown NT (1991) Stress protein synthesis as a potential biomarker for heat-induced developmental toxicity. Teratology 43: 465

    Google Scholar 

  • Kimmel CA, Cuff JM, Kimmel GL, Heredia DJ, Tudor N, Silverman PM (1993) Skeletal development following heat exposure in the rat. Teratology 47:229–242

    Article  PubMed  CAS  Google Scholar 

  • Kimmel CA, Claggett TW, Kimmel GL, Tudor N, Hogan KA (1994) Segmentation anomalies and stress proteins induced by heat on gestation days (GD) 10, 11 or 12 in the rat. Teratology 49: 409

    Google Scholar 

  • Kimmel GL, Cuff JM, Kimmel CA, Heredia DJ, Tudor N, Silverman PM (1993) Embryonic development in vitro following short-duration exposure to heat. Teratology 47:243–251

    Article  PubMed  CAS  Google Scholar 

  • Kimmel GL, Claggett TW, Kimmel CA, Bolou B, Todor N (1995) The progression of effects of heat stress on somitogenesis in the rat. Teratology 51:157–158

    Google Scholar 

  • Landini P, Hajec LI, Volkert MR (1994) Structure and transcriptional regulation of the Escherichia coli adaptive response gene aidB. J Bacteriol 176:6583–6589

    PubMed  CAS  Google Scholar 

  • Landry J, ChrĂ©tien P, Lambert H, Hickey E, Weber LA (1989) Heat shock resistance conferred by expression of the human HSP27 gene in rodent cells. J Cell Biol 109:7–15

    Article  PubMed  CAS  Google Scholar 

  • Laszlo A, Li GC (1985) Heat resistant variants of Chinese hamster fibroblasts altered in expression of heat shock protein. Proc Natl Acad Sci USA 82:8029–8033

    Article  PubMed  CAS  Google Scholar 

  • Lavoie JN, Gingras-Breton G, Tanguay RM, Landry J (1993) Induction of Chinese hamster HSP27 gene expression in mouse cells confers resistance to heat shock. HSP27 stabilization of the microfilament organization. J Biol Chem 268:3420–3429

    PubMed  CAS  Google Scholar 

  • Lavoie JN, Lambert H, Hickey E, Weber LA, Landry J (1995) Modulation of cellular thermoresistance and actin filament stability accompanies phosphorylation-in-duced changes in the oligomeric structure of heat shock protein 27. Mol Cell Biol 15:505–516

    PubMed  CAS  Google Scholar 

  • Lemotte PK, Walker GC (1985) Induction and autoregulation of ada, a positively acting element regulating the response of Escherichia coli K-12 to methylating agents. J Bacteriol 161:888–895

    PubMed  CAS  Google Scholar 

  • Li GC, Laszlo A (1985) Thermotolerance in mammalian cells: a possible role for heat shock proteins. In: Atkinson BG, Waiden DB (eds) Changes in eukaryotic gene expression in response to environmental stress. Academic, Orlando, p 227

    Google Scholar 

  • Li GC, Werb Z (1982) Correlation between synthesis of heat shock proteins and development of thermotolerance in Chinese hamster fibroblasts. Proc Natl Acad Sci USA 79:3218–3222

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Demple B (1994) SoxS, an activator of superoxide stress genes in Escherichia coli. Purification and interaction with DNA. J Biol Chem 269:18371–18377

    PubMed  CAS  Google Scholar 

  • Li GC, Li LG, Liu YK et al. (1991) Thermal response of rat fibroblasts stably trans-fected with the human 70-kDa heat shock protein-encoding gene. Proc Natl Acad Sci USA 88:1681–1685

    Article  PubMed  CAS  Google Scholar 

  • Little JW, Mount DW (1982) The SOS regulatory system of Escherichia coli. Cell 29:11–22

    Article  PubMed  CAS  Google Scholar 

  • Little SA, Mirkes PE (1994) Induction of the growth arrest-DNA damage induced gene (gadd 153) in rat embryos in response to genotoxic agents. Teratology 49: 400

    Google Scholar 

  • Lloyd RG, Benson FE, Shurvinton CE (1984) Effect of ruv mutations on recombination and DNA repair in Escherichia coli Kl2. Mol Gen Genet 194:303–309

    Article  PubMed  CAS  Google Scholar 

  • Lord KA, Hoffman-Liebermann B, Liebermann DA (1990) Complexity of the immediate early response of myeloid cells to terminal differentiation and growth arrest includes ICAM-1, Jun-B and histone variants. Oncogene 5:387–396

    PubMed  CAS  Google Scholar 

  • Maines MD (1984) New Developments in the regulation of heme metabolism and their implications. Crit Rev Toxicol 12:241–314

    Article  PubMed  CAS  Google Scholar 

  • Marquez CM, Sneed PK, Li GC, Mak JY, Phillips TL (1994) HSP 70 synthesis in clinical hyperthermia patients: preliminary results of a new technique. Int J Radiat Oncol Biol Phys 28: 425–30

    Article  PubMed  CAS  Google Scholar 

  • Matts RL, Xu Z, Pal JK, Chen J J (1992) Interactions of the heme-regulated eIF-2 alpha kinase with heat shock proteins in rabbit reticulocyte lysates. J Biol Chem 267:18160–18167

    PubMed  CAS  Google Scholar 

  • McCarthy TV, Karran P, Lindahl T (1984) Inducible repair of O-alkylated DNA pyrimidines in Escherichia coli. EMBO J 3:545–550

    PubMed  CAS  Google Scholar 

  • McClanahan T, McEntee K (1984) Specific transcripts are elevated in Saccharomyces cerevisiae in response to DNA damage. Mol Cell Biol 4:2356–2363

    PubMed  CAS  Google Scholar 

  • Mirkes PE (1985) Hyperthermia-induced heat shock response and thermotolerance in postimplantation rat embryos. Dev Biol 119:115–122

    Article  Google Scholar 

  • Mirkes PE, Cornel L (1992) A comparison of sodium arsenite-and hyperthermia-induced stress responses and abnormal development in cultured postimplantation rat embryos. Teratology 46:251–259

    Article  PubMed  CAS  Google Scholar 

  • Mirkes PE, Doggett B (1992) Accumulation of heat shock protein 72 (hsp 72) in postimplantation rat embryos after exposure to various periods of hyperthermia (40–43 °C) in vitro: evidence that heat shock protein 72 is a biomarker of heat-induced embryo toxicity. Teratology 46:301–309

    Article  PubMed  CAS  Google Scholar 

  • Mirkes PE, Grace RH, Little SA (1991) Developmental regulation of heat shock protein synthesis and HSP 70 RNA accumulation during postimplantation rat embryogenesis. Teratology 44:77–89

    Article  PubMed  CAS  Google Scholar 

  • Mirkes PE, Doggett B, Cornel L (1994) Induction of heat shock response (HSP 72) in rat embryos exposed to selected chemical teratogens. Teratology 49:135–142

    Article  PubMed  CAS  Google Scholar 

  • Miskin R, Ben-Ishai R (1981) Induction of plasminogen activator by UV light in normal and xeroderma pigmentosum fibroblasts. Proc Natl Acad Sci USA 78:6236–6240

    Article  PubMed  CAS  Google Scholar 

  • Modrich P (1994) Mismatch repair, genetic stability and cancer. Science 266:1959–1960

    Article  PubMed  CAS  Google Scholar 

  • Morange M, Diu A, Bensaude O, Babinet C (1984) Altered expression of heat shock proteins in embryonal carcinoma and mouse early embryonic cells. Mol Cell Biol 4:730–735

    PubMed  CAS  Google Scholar 

  • Morimoto RI (1993) Cells in stress: transcriptional activation of heat shock genes. Science 259:1409–1410

    Article  PubMed  CAS  Google Scholar 

  • Nakai A, Morimoto RI (1993) Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway. Mol Cell Biol 13:1983–1997

    PubMed  CAS  Google Scholar 

  • Nebert DW (1994) Drug-metabolizing enzymes in ligand-modulated transcription. Biochem Pharmacol 47:25–37

    Article  PubMed  CAS  Google Scholar 

  • Nebert DW, Petersen DD, Fornace AJ Jr (1990) Cellular responses to oxidative stress: the [Ah] gene battery as a paradigm. Environ Health Perspect 88:13–25

    Article  PubMed  CAS  Google Scholar 

  • Nover L (1991) Heat shock response. CRC Press, Boca Raton

    Google Scholar 

  • Papathanasiou MA, Fornace AJ Jr (1991) DNA-damage inducible genes. Cancer Treat Res 57:13–36

    Article  PubMed  CAS  Google Scholar 

  • Pongratz I, Mason GG, Poellinger L (1992) Dual roles of the 90-kDa heat shock protein hsp90 in modulating functional activities of the dioxin receptor. Evidence that the dioxin receptor functionally belongs to a subclass of nuclear receptors which require hsp 90 both for ligand binding activity and repression of intrinsic DNA binding activity. J Biol Chem 267:13728–13734

    PubMed  CAS  Google Scholar 

  • Reimer DL, Singh SM (1990) In situ hybridization studies on murine catalase mRNA expression during embryonic development. Dev Genet 11:318–325

    Article  PubMed  CAS  Google Scholar 

  • Riabowol KT, Mizzen LA, Welch WJ (1988) Heat shock is lethal to fibroblasts mi-croinjected with antibodies against hsp 70. Science 242: 433–36

    Article  PubMed  CAS  Google Scholar 

  • Ritossa F (1962) A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18:571–573

    Article  CAS  Google Scholar 

  • Ron D, Habener JF (1992) CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant negative inhibitor of gene transcription. Genes Dev 6: 439–453

    Article  PubMed  CAS  Google Scholar 

  • Ruby SW, Szostak JW (1985) Specific Saccharomyces cerevisiae genes are expressed in response to DNA-damaging agents. Mol Cell Biol 5:75–84

    PubMed  CAS  Google Scholar 

  • Rushmore TH, Morton MR, Pickett CB (1991) The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J Biol Chem 266:11632–11639

    PubMed  CAS  Google Scholar 

  • Samson L, Cairns J (1977) A new pathway for DNA repair in Escherichia coli. Nature 267:281–283

    Article  PubMed  CAS  Google Scholar 

  • Sancar A (1994) Mechanisms of DNA excision repair. Science 266:1954–1956

    Article  PubMed  CAS  Google Scholar 

  • Sancar A, Rupp WD (1983) A novel repair enzyme: UVRABC excision nuclease of Escherichia coli cuts a DNA strand on both sides of the damaged region. Cell 33:249–260

    Article  PubMed  CAS  Google Scholar 

  • Sanchez Y, Lindquist SL (1990) HSP 104 required for induced thermotolerance. Science 248:1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Sanchez Y, Taulien J, Borkovich KA, Lindquist S (1992) HSP104 is required for tolerance to many forms of stress. EMBO J 11:2357–2364

    PubMed  CAS  Google Scholar 

  • Sedgwick B (1983) Molecular cloning of a gene which regulates the adaptive response to alkylating agents in Escherichia coli. Mol Gen Genet 191:466–472

    Article  PubMed  CAS  Google Scholar 

  • Shaknovich R, Shue G, Kohtz DS (1992) Conformational activation of a basic helix-loop-helix protein (MyoDl) by the C-terminal region of murine HSP90 (HSP84). Mol Cell Biol 12:5059–5068

    PubMed  CAS  Google Scholar 

  • Sistonen L, Sarge KD, Morimoto RI (1994) Human heat shock factors 1 and 2 are differentially activated and can synergistically induce hsp 70 gene transcription. Mol Cell Biol 14:2087–2099

    PubMed  CAS  Google Scholar 

  • Smith DF, Toft DO (1993) Steroid receptors and their associated proteins. Mol Endocrinol 7:4–11

    Article  PubMed  CAS  Google Scholar 

  • Somashekaraiah BV, Padmaja K, Prasad AR (1992) Lead-induced lipid peroxidation and antioxidant defense components of develo** chick embryos. Free Radic Biol Med 13:107–114

    Article  PubMed  CAS  Google Scholar 

  • Stocker R (1990) Induction of haem oxygenase as a defence against oxidative stress. Free Radic Res Commun 9:101–112

    Article  PubMed  CAS  Google Scholar 

  • Teo I, Sedgwick B, Demple B, Li B, Lindahl T (1984) Induction of resistance to alkylating agents in E. Coli: the ada+ gene product serves both as a regulatory protein and as an enzyme for repair or mutagenic damage. EMBO J 3:2151–2157

    PubMed  CAS  Google Scholar 

  • Vile GF, Tyrrell RM (1993) Oxidative stress resulting from ultraviolet A irradiation of human skin fibroblasts leads to a heme oxygenase-dependent increase in ferritin. J Biol Chem 268:14678–14681

    PubMed  CAS  Google Scholar 

  • Walker GC (1984) Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol Rev 48:60–93

    PubMed  CAS  Google Scholar 

  • Walker GC (1985) Inducible DNA repair systems. Annu Rev Biochem 54: 425–157

    Article  PubMed  CAS  Google Scholar 

  • Walkup LK, Kogoma I (1989) Escherichia coli proteins inducible by oxidative stress mediated by the superoxide radical. J Bacteriol 171:1476–1484

    PubMed  CAS  Google Scholar 

  • Walsh DA, Klein NW, Hightower LE, Edwards MJ (1987) Heat shock and thermo-tolerance during early rat embryo development. Teratology 36:181–191

    Article  PubMed  CAS  Google Scholar 

  • Welch WJ (1992) Mammalian stress response: cell physiology, structure/function of stress proteins, and implications for medicine and disease. Physiol Rev 72:1063–1081

    PubMed  CAS  Google Scholar 

  • Werner-Washburne M, Stone DE, Craig EA (1987) Complex interactions among members of an essential subfamily of hsp 70 genes in Saccharomyces cerevisiae. Mol Cell Biol 7:2568–2577

    PubMed  CAS  Google Scholar 

  • West SC, Howard-Flanders P (1984) Duplex-duplex interactions catalyzed by RecA protein allow strand exchange to pass double-strand breaks in DNA. Cell 37:683–691

    Article  PubMed  CAS  Google Scholar 

  • West SC, Cassuto E, Howard-Flanders P (1981) Mechanism of E. coli RecA protein directed strand exchanges in post-replication repair of DNA. Nature 294:659–662

    Article  PubMed  CAS  Google Scholar 

  • West SC, Cassuto E, Howard-Flanders P (1982) Postreplication repair in E. coli: strand exchange reactions of gapped DNA by RecA protein. Mol Gen Genet 187:209–217

    Article  PubMed  CAS  Google Scholar 

  • White CN, High to wer LE, Schultz RJ (1994) Variation in heat-shock proteins among species of desert fishes (Poeciliidae, Poeciliopsis). Mol Biol Evol 11:106–119

    PubMed  CAS  Google Scholar 

  • Williams RS, Thomas JA, Fina M, German Z (1993) Human heat shock protein 70 (hsp 70) protects murine cells from injury during metabolic stress. J Clin Invest 92:503–508

    Article  PubMed  CAS  Google Scholar 

  • Wittig S, Hensse S, Keitel C, Eisner C, Wittig B (1983) Heat shock gene expression is regulated during teratocarcinoma cell differentiation and early embryonic development. Dev Biol 96:507–514

    Article  PubMed  CAS  Google Scholar 

  • Woloschak GE, Chang-Liu CM, Jones PS, Jones CA (1990) Modulation of gene expression in Syrian hamster embryo cells following ionizing radiation. Cancer Res 50:339–344

    PubMed  CAS  Google Scholar 

  • Yamamoto Y, Kataoka H, Nakabeppu Y, Tsuzuki T, Sekiguchi M (1983) The genes involved in the repair of alkylated DNA in Escherichia coli K-12. In: Friedberg EG, Bridges BA (eds) Cellular responses to DNA damage. Liss, New York, pp 271–278

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mirkes, P.E. (1997). Cellular Responses to Stress. In: Kavlock, R.J., Daston, G.P. (eds) Drug Toxicity in Embryonic Development I. Handbook of Experimental Pharmacology, vol 124 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60445-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60445-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64408-5

  • Online ISBN: 978-3-642-60445-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation