Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 188 Accesses

Abstract

One of the most interesting aspects of thermal biology in the mammalian system is the response of heated cells to subsequent heat challenges. Mammalian cells, when exposed to a nonlethal heat shock, have the ability to acquire a transient resistance to one or more subsequent exposures at elevated temperatures. This phenomenon has been termed thermotolerance (Gerner and Schneider 1975; Henle and Leeper 1976). It has been studied most extensively in mammalian cells, largely because of the interest in the use of heat as an adjuvant technique for the treatment of some human cancers (Hahn 1982). The clinical application of hyperthermia, in general, involves multiple exposures of tumors to elevated temperatures. Clearly, it is important to know whether a past treatment affects the response of cells to a subsequent heat exposure. Therefore, the kinetics of induction and decay of thermo tolerance are of great interest. Furthermore, it is equally important to determine whether the radiation (or drug) sensitivity of cells surviving hyperthermic exposures has been modified. Many studies have examined the response of thermo-tolerant cells to drugs or x-irradiation (see Chaps. 4 and 5 in this volume).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 210.99
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 210.99
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Amici C, Palamara T, Santoro MG (1993) Induction of thermotolerance by prostaglandin A in human cells. Exp Cell Res 207: 230–234

    PubMed  CAS  Google Scholar 

  • Ananthan J, Goldberg AL, Voellmy R (1986) Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science 232: 522–524

    PubMed  CAS  Google Scholar 

  • Anderson RL, Hahn GM (1985) Differential effects of hyperthermia on the Na+,K+-ATPase of Chinese hamster ovary cells. Radiat Res 102: 314–323

    PubMed  CAS  Google Scholar 

  • Angelidis CE, Lazaridis I, Pagoulatos GN (1991) Constitutive expression of heat-shock protein 70 in mammalian cells confers thermoresistance. Eur J Biochem 199: 35–39

    PubMed  CAS  Google Scholar 

  • Arrigo AP, Suhan JP, Welch WJ (1988) Dynamic changes in the structure and intracellular locale of the mammalian low-molecular-weight heat shock protein. Mol Cell Biol 8: 5059–5071

    PubMed  CAS  Google Scholar 

  • Banerji SS, Theodorakis NG, Morimoto RI (1984) Heat shock-induced translational control of HSP70 and globin synthesis in chicken reticulocytes. Mol Cell Biol 4: 2437–2448

    PubMed  CAS  Google Scholar 

  • Banerji SS, Laing K, Morimoto RI (1987) Erythroid lineage-specific expression and inducibility of the major heat shock protein HSP70 during avian embryogenesis. Genes Dev 1: 946–953

    PubMed  CAS  Google Scholar 

  • Bansal GS, Norton PM, Latchman DS (1991) The 90-kDa heat shock protein protects mammalian cells from thermal stress but not from viral infection. Exp Cell Res 195: 303–306

    PubMed  CAS  Google Scholar 

  • Bardwell JCA, Craig EA (1984) Major heat shock gene of Drosophila and the Escherichia coli heat-inducible dnaK gene are homologous. Proc Natl Acad Sci USA 81: 848–852

    PubMed  CAS  Google Scholar 

  • Bardwell JCA, Craig EA (1987) Eukaryotic M r 83 000 heat shock protein has a homologue in Escherichia coli. Proc Natl Acad Sci USA 84: 5177–5181

    PubMed  CAS  Google Scholar 

  • Bohen SP, Yamamoto KR (1994) Modulation of steroid receptor signal transduction by heat shock proteins. In: Morimoto RI, Tissieres A, Georgopoulos C (eds) The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, New York, pp 313–334

    Google Scholar 

  • Boon-Niermeijer EK, Tuyl M, Van der Scheur H (1986) Evidence for two states of thermotolerance. Int J Hyperthermia 2: 93–105

    PubMed  CAS  Google Scholar 

  • Boon-Niermeijer EK, Souren JEM, De Waal AM, Van Wijk R (1988) Thermotolerance induced by heat and ethanol. Int J Hyperthermia 4: 211–222

    PubMed  CAS  Google Scholar 

  • Burdon RH (1986) Heat shock and the heat shock proteins. Biochem J 240: 313–324

    PubMed  CAS  Google Scholar 

  • Burdon RH, Cutmore CMM (1982) Human heat shock gene expression and the modulation of Na+,K+-ATPase activity. FEBS Lett 140: 45–48

    PubMed  CAS  Google Scholar 

  • Burgman PWJJ, Kam**a HH, Konings AWT (1993) Possible role of localized protein denaturation in the induction of thermotolerance by heat, sodium-arsenite, and ethanol. Int J Hyperthermia 9: 151–162

    PubMed  CAS  Google Scholar 

  • Calderwood SK, Hahn GM (1983) Thermal sensitivity and resistance of insulin-receptor binding. Biochim Biophys Acta 756: 1–8

    PubMed  CAS  Google Scholar 

  • Calderwood SK, Stevenson MA, Hahn GM (1985) Cyclic AMP and the heat shock response in Chinese hamster ovary cells. Biochem Biophys Res Commun 126: 911–916

    PubMed  CAS  Google Scholar 

  • Chu GL, Dewey WC (1987) Effect of cycloheximide on heat-induced cell killing, radiosensitization, and loss of cellular DNA polymerase activities in Chinese hamster ovary cells. Radiat Res 112: 575–580

    PubMed  CAS  Google Scholar 

  • Collier NC, Schlesinger MJ (1986) The dynamic state of heat shock proteins in chicken embryo fibroblasts. J Cell Biol 103: 1495–1507

    PubMed  CAS  Google Scholar 

  • Craig EA (1990) Role of hsp70 in translocation of proteins across membranes. In: Morimoto RI, Tissieres A, Georgopoulos C (eds) Stress proteins in biology and medicine. Cold Spring Harbor Laboratory Press, New York, pp 279–286

    Google Scholar 

  • Crete P, Landry J (1990) Induction of hsp27 phosphoryla-tion and thermoresistance in Chinese hamster cells by arsenite, cycloheximde, A23187, and EGTA. Radiat Res 121: 320–327

    PubMed  CAS  Google Scholar 

  • Dice JF, Agarraberes F, Kirven-Brooks M, Terlecky LJ, Terlecky SR (1994) Heat-shock 70-kD proteins and lysosomal proteolysis. In: Morimoto RI, Tissières A, Georgopoulos C (eds) The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, New York, pp 137–151

    Google Scholar 

  • Dikomey E, Becker W, Wielckens K (1987) Reduction of DNA-polymerase β activity of CHO cells by single and combined heat treatments. Int J Radiat Biol 52: 775–785

    CAS  Google Scholar 

  • Dura JM (1981) Hsp synthesis is induced only after treatment at blastoderm and later stages in development. Mol Gen Genet 184: 73–79

    Google Scholar 

  • Frydman J, Hartl F-U (1994) Molecular chaperone functions of hsp70 and hsp60 in protein folding. In: Morimoto RI, Tissières A, Georgopoulos C (eds) The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, New York, pp 251–283

    Google Scholar 

  • Gaitanaris GA, Papavassiliou AG, Rubock P, Silverstein SJ, Gottesman ME (1990) Renaturation of denatured). repressor requires heat shock proteins. Cell 61: 1013–1020

    PubMed  CAS  Google Scholar 

  • Georgopoulos C, Ang D, Liberek K, Zylicz M (1990) Properties of the E. coli heat shock proteins and their role in bacteriophage lambda growth. In: Morimoto RI, Tissieres A, Georgopoulus C (eds) Stress proteins in biology and medicine. Cold Spring Harbor Laboratory Press, New York, pp 191–222

    Google Scholar 

  • Gerner EW, Schneider MJ (1975) Induced thermal resistance in HeLa cells. Nature 256: 500–502

    PubMed  CAS  Google Scholar 

  • Goff SA, Goldberg LA (1985) Production of abnormal proteins in E. coli stimulates transcription of Ion and other heat-shock genes. Cell 41: 587–595

    PubMed  CAS  Google Scholar 

  • Hahn GM (1982) Hyperthermia and cancer. Plenum Press, New York

    Google Scholar 

  • Hahn GM, Shiu EC (1985) Protein synthesis, thermotolerance and step down heating. Int J Radiat Oncol Biol Phys 11: 159–164

    PubMed  CAS  Google Scholar 

  • Hahn GM, Shiu EC, West B, Goldstein L, Li GC (1985) Mechanistic implications of the induction of thermotolerance in Chinese hamster cells by organic solvents. Cancer Res 45: 4138–4143

    PubMed  CAS  Google Scholar 

  • Hatayama T, Kano E, Taniguchi Y, Nitta K, Wakatsuki T, Kitamura T, Imahara H (1991) Role of heat-shock proteins in the induction of thermotolerance in Chinese hamster V79 cells by heat and chemical agents. Int J Hyperthermia 7: 61–74

    PubMed  CAS  Google Scholar 

  • Hattori H, Liu Y-C, Tohnai I, et al. (1992) Intracellular localization and partial amino acid sequence of a stressinducible 40kDa protein in HeLa cells. Cell Struct Funct 17: 77–86

    PubMed  CAS  Google Scholar 

  • Haveman J, Li GC, Mak JY, Kipp JB (1986) Chemically induced resistance to heat treatment and stress protein synthesis in cultured mammalian cells. Int J Radiat Biol 50: 51–64

    CAS  Google Scholar 

  • Hendrick JP, Hartl F-U (1993) Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem 62: 349–384

    PubMed  CAS  Google Scholar 

  • Henle KJ, Leeper DB (1976) Interaction of hyperthermia and radiation in CHO cells: recovery kinetics. Radiat Res 66: 505–518

    PubMed  CAS  Google Scholar 

  • Henle KJ, Moss AJ, Nagle WA (1986) Temperaturedependent induction of thermotolerance by ethanol. Radiat Res 108: 327–335

    PubMed  CAS  Google Scholar 

  • Hightower LE (1980) Cultured animal cells exposed to amino acid analogues or puromycin rapidly synthesize several polypeptides. J Cell Physiol 102: 407–427

    PubMed  CAS  Google Scholar 

  • Hunt C, Morimoto RI (1985) Conserved features of eukaryotic hsp70 genes revealed by comparison with the nucleotide sequence of human hsp70. Proc Natl Acad Sci USA 82: 6455–6459

    PubMed  CAS  Google Scholar 

  • Jakob U, Gaestel M, Engel K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268: 1517–1520

    PubMed  CAS  Google Scholar 

  • Johnston RN, Kacey BL (1988) Competitive inhibition of hsp70 gene expression causes thermosensitivity. Science 242: 1551–1554

    PubMed  CAS  Google Scholar 

  • Jorritsma JBM, Burgman P, Kam**a HH, Konings AWT (1986) DNA-polymerase activity in heat killing and hyperthermic radiosensitization of mammalian cells, as observed after fractionated heat treatments. Radiat Res 105: 307–319

    PubMed  CAS  Google Scholar 

  • Kam**a HH (1993) Thermotolerance in mammalian cells: protein denaturation, aggregation and stress proteins. J Cell Sci 104: 11–17

    PubMed  CAS  Google Scholar 

  • Kam**a HH, Jorritsma JBM, Konings AWT (1985) Heat-induced alterations in DNA polymerase activity of HeLa cells and of isolated nuclei. Relation to cell survival. Int J Radiat Biol 47: 29–40

    CAS  Google Scholar 

  • Kam**a HH, Turkel-Uygur N, Roti Roti JL, Konings AWT (1989) The relationship of increased nuclear protein content induced by hyperthermia to killing of HeLa S3 cells. Radiat Res 117: 511–522

    PubMed  CAS  Google Scholar 

  • Kam**a HH, Brunsting JF, Konings AWT (1992) Acquisition of thermotolerance induced by heat and arsenite in HeLa cells: multiple pathways to induce tolerance? J Cell Physiol 150: 406–415

    PubMed  CAS  Google Scholar 

  • Khan NA, Sotelo J (1989) Heat shock stress is deleterious to CNS cultured neurons microinjected with anti-HSP70 antibodies. Biol Cell 65: 199–202

    PubMed  CAS  Google Scholar 

  • Kochevar DT, Aucoin MM, Cooper J (1991) Mammalian heat shock proteins: an overview with a systems perspective. Toxicol Lett 56: 243–267

    PubMed  CAS  Google Scholar 

  • Landry J, Chretien P, Lambert H, Hickey E, Weber LA (1989) Heat shock resistance conferred by expression of the human HSP27 gene in rodent cells. J Cell Biol 109: 7–15

    PubMed  CAS  Google Scholar 

  • Landry J, Chretien P, Laszlo A, Lambert H (1991) Phosphorylation of HSP27 during development and decay of thermotolerance in Chinese hamster cells. J Cell Physiol 147: 93–101

    PubMed  CAS  Google Scholar 

  • Larson JS, Schuetz TJ, Kingston RE (1988) Activation in vitro of sequence-specific DNA binding by a human regulatory factor. Nature 335: 372–375

    PubMed  CAS  Google Scholar 

  • Laszlo A (1988a) Evidence for two states of thermotolerance in mammalian cells. Int J Hyperthermia 4: 513–526

    PubMed  CAS  Google Scholar 

  • Laszlo A (1988b) The relationship of heat-shock proteins, thermotolerance, and protein synthesis. Exp Cell Res 178: 401–414

    PubMed  CAS  Google Scholar 

  • Laszlo A (1992) The effects of hyperthermia on mammalian cell structure and function. Cell Prolif 25: 59–87

    PubMed  CAS  Google Scholar 

  • Laszlo A, Li GC (1993) Effect of amino acid analogs on the development of thermotolerance and on thermotolerant cells. J Cell Physiol 154: 419–432

    PubMed  CAS  Google Scholar 

  • Lee K-J, Hahn GM (1988) Abnormal proteins as the trigger for the induction of stress responses: heat, diamide, and sodium arsenite. J Cell Physiol 136: 411–420

    PubMed  CAS  Google Scholar 

  • Lee YJ, Dewey WC (1987) Induction of heat shock proteins in Chinese hamster ovary cells and development of thermotolerance by intermediate concentrations of puromycin. J Cell Physiol 132: 1–11

    PubMed  CAS  Google Scholar 

  • Lee YJ, Curetty L, Corry PM (1991) Differences in preferential synthesis and redistribution of hsp70 and hsp28 families by heat and sodium arsenite in Chinese hamster ovary cells. J Cell Physiol 149: 77–87

    PubMed  CAS  Google Scholar 

  • Lepock JR, Frey HE, Heynen MP, Nishio J, Waters B, Ritchie KP, Kruuv J (1990) Increased thermostability of thermotolerant CHL V79 cells as determined by differential scanning calorimetry. J Cell Physiol 142: 628–634

    PubMed  CAS  Google Scholar 

  • Li GC (1983) Induction of thermotolerance and enhanced heat shock protein synthesis in Chinese hamster fibroblasts by sodium arsenite and by ethanol. J Cell Physiol 115: 116–122

    PubMed  CAS  Google Scholar 

  • Li GC (1985) Elevated levels of 70000 dalton heat shock protein in transiently thermotolerant Chinese hamster fibroblasts and in their stable heat resistant variants. Int J Radiat Oncol Biol Phys 11: 165–177

    PubMed  CAS  Google Scholar 

  • Li GC, Hahn GM (1978) Ethanol-induced tolerance to heat and to adriamycin. Nature 274: 699–701

    PubMed  CAS  Google Scholar 

  • Li GC, Hahn GM (1980) A proposed operational model of thermotolerance based on effects of nutrients and the initial treatment temperature. Cancer Res 40: 4501–4508

    PubMed  CAS  Google Scholar 

  • Li GC, Laszlo A (1985) Amino acid analogs while inducing heat shock proteins sensitize CHO cells to thermal damage. J Cell Physiol 122: 91–97

    PubMed  CAS  Google Scholar 

  • Li GC, Mak JY (1985) Induction of heat shock protein synthesis in murine tumors during the development of thermotolerance. Cancer Res 45: 3816–3824

    PubMed  CAS  Google Scholar 

  • Li GC, Mak JY (1989) Re-induction of hsp70 synthesis: an assay for thermotolerance. Int J Hyperthermia 5: 389–403

    PubMed  CAS  Google Scholar 

  • Li GC, Mivechi NF (1986) Thermotolerance in mammalian systems: a review. In: Anghileri LJ, Robert J (eds) Hyperthermia in cancer treatment. CRC Press, Boca Raton, Fl, pp 59–77

    Google Scholar 

  • Li GC, Fisher GA, Hahn GM (1982a) Induction of thermotolerance and evidence for a well-defined, thermotropic cooperative process. Radiat Res 89: 361–368

    PubMed  CAS  Google Scholar 

  • Li GC, Fisher GA, Hahn GM (1982b) Modification of the thermal response by D2O. II. Thermotolerance and the specific inhibition of development. Radiat Res 92: 541–551

    PubMed  CAS  Google Scholar 

  • Li GC, Li L, Liu Y-K, Mak JY, Chen L, Lee WMF (1991) Thermal response of rat fibroblasts stably-transfected with the human 70kDa heat shock protein-encoding gene. Proc Natl Acad Sci USA 88: 1681–1685

    PubMed  CAS  Google Scholar 

  • Liberek K, Skowyra D, Zylicz M, Johnson C, Georgopoulos C (1991) The Escherichia coli DnaK chaperone, the 70-kDa heat shock protein eukaryotic equivalent, changes conformation upon ATP hydrolysis, thus triggering its dissociation from a bound target protein. J Biol Chem 266: 14491–14496

    PubMed  CAS  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat shock proteins. Annu Rev Genet 22: 631–677

    PubMed  CAS  Google Scholar 

  • Lis J, Wu C (1993) Protein traffic on the heat shock promoter: parking, stalling, and trucking along. Cell 74: 1–4

    PubMed  CAS  Google Scholar 

  • Liu RY, Kim D, Yang S-H, Li GC (1993) Dual control of heat shock response: involvement of a constitutive heat shock element-binding factor. Proc Natl Acad Sei USA 90: 3078–3082

    CAS  Google Scholar 

  • Lunec J, Cresswell SR (1983) Heat-induced thermotolerance expressed in the energy metabolism of mammalian cells. Radiat Res 93: 588–597

    PubMed  CAS  Google Scholar 

  • Maytin EV, Wimberly JM, Anderson RR (1990) Thermotolerance and the heat shock response in normal human keratinocytes in culture. J Invest Dermatol 95: 635–642

    PubMed  CAS  Google Scholar 

  • Minton KW, Karmin P, Hahn GM, Minton AP (1982) Non-specific stabilization of stress-susceptible proteins by stress-resistant proteins: a model for the biological role of heat shock proteins. Proc Natl Acad Sci USA 79: 7107–7111

    PubMed  CAS  Google Scholar 

  • Mizzen LA, Welch WJ (1988) Characterization of the thermotolerant cell. I. Effects on protein synthesis activity and the regulation of heat-shock protein 70 expression. J Cell Biol 106: 1105–1116

    PubMed  CAS  Google Scholar 

  • Mizzen LA, Chang C, Garrels JG, Welch WJ (1989) Identification, characterization and purification of two mammalian stress proteins present in the mitochondria: one related to hsp70, the other to GroEL. J Biol Chem 264: 20664–20675

    PubMed  CAS  Google Scholar 

  • Morimoto RI (1993) Cells in stress: transcriptional activation of heat shock genes. Science 259: 1409–1410

    PubMed  CAS  Google Scholar 

  • Morimoto RI, Milarski KL (1990) Expression and function of vertebrate hsp70 genes. In: Morimoto RI, Tissieres A, Georgopoulos C (eds) Stress proteins in biology and medicine. Cold Spring Harbor Laboratory Press, New York, pp 323–360

    Google Scholar 

  • Morimoto RI, Tissieres A, Georgopoulos C (1990) The stress response, function of the proteins, and perspectives. In: Morimoto RI, Tissieres A, Georgopoulos C (eds) Stress proteins in biology and medicine. Cold Spring Harbor Laboratory Press, New York, pp 1–36

    Google Scholar 

  • Morimoto RI, Sarge KD, Abravaya K (1992) Transcriptional regulation of heat shock genes: a paradigm for inducible genomic responses. J Biol Chem 267: 21987–21990

    PubMed  CAS  Google Scholar 

  • Müller WU, Li GC, Goldstein LS (1985) Heat does not induce synthesis of heat shock proteins or thermotolerance in the earliest stage of mouse embryo development. Int J Hyperthermia 1: 97–102

    PubMed  Google Scholar 

  • Munro S, Pelham HRB (1985) What turns on heat shock genes. Nature 317: 477–478

    PubMed  CAS  Google Scholar 

  • Nagata K, Yamada KM (1986) Phosphorylation and transformation sensitivity of a major collagen-binding protein of fibroblasts. J Biol Chem 261: 7531–7536

    PubMed  CAS  Google Scholar 

  • Nagata K, Saga S, Yamada KM (1986) A major collagenbinding protein of chick embryo fibroblasts is a novel heat shock protein. J Cell Biol 103: 223–229

    PubMed  CAS  Google Scholar 

  • Nguyen VT, Morange M, Bensaude O (1989) Protein denaturation during heat shock and related stress. J Biol Chem 264: 10487–10492

    PubMed  CAS  Google Scholar 

  • Nover L, Munsche D, Neumann D, Ohme K, Scharf KD (1986) Control of ribosome biosynthesis in plant cell cultures under heat-shock conditions. Ribosomal RNA. Eur J Biochem 160: 297–304

    CAS  Google Scholar 

  • Ohtsuka K, Masuda A, Nakai A, Nagata K (1990) A novel 40-kDa protein induced by heat shock and other stresses in mammalian and avian cells. Biochem Biophys Res Commun 166: 642–647

    PubMed  CAS  Google Scholar 

  • Okamoto H, Hiromi Y, Ishikaw E, Yamada T, Isoch K, Mackawa H, Hotta Y (1986) Molecular characterization of mutant actin genes which induce heat-shock proteins in Drosphila flight muscles. EMBO J 5: 589–596

    PubMed  CAS  Google Scholar 

  • Ostermann J, Horwich AL, Neupert W, Hartl F-U (1989) Protein folding in mitochondria requires complex formation with hsp60 and ATP hydrolysis. Nature 341: 125–130

    PubMed  CAS  Google Scholar 

  • Pelham HRB (1990) Functions of the hsp70 protein family: an overview. In: Morimoto RI, Tissieres A, Georgopoulos C (eds) Stress proteins in biology and medicine. Cold Spring Harbor Laboratory Press, New York, pp 287–299

    Google Scholar 

  • Pinto M, Morange M, Bensaude O (1991) Denaturation of proteins during heat shock. J Biol Chem 266: 13941–13946

    PubMed  CAS  Google Scholar 

  • Pratt WB (1990) At the cutting edge: interaction of Hsp90 with steroid receptors: organizing some diverse observations and presenting the newest concepts. Mol Cell Endocrinol 74: C69–C76

    PubMed  CAS  Google Scholar 

  • Rastogi D, Nagle WA, Henle KJ, Moss AJ, Rastogi SP (1988) Uncoupling of oxidative phosphorylation does not induce thermotolerance in cultured Chinese hamster cells. Int J Hyperthermia 4: 333–344

    PubMed  CAS  Google Scholar 

  • Riabowol KT, Mizzen LA, Welch WJ (1988) Heat shock is lethal to fibroblasts microinjected with antibodies against hsp70. Science 242: 433–436

    PubMed  CAS  Google Scholar 

  • Ritossa FM (1962) A new puffing pattern induced by heat shock and DNP in Drosophila. Experientia 18: 571–573

    CAS  Google Scholar 

  • Ritossa FM (1963) New puffs induced by temperature shock, DNP and salicylate in salivary chromosomes of Drosophila melanogaster. Drosophila Inf Service 37:122–123

    Google Scholar 

  • Sanchez ER (1990) Hsp56: a novel heat shock protein associated with untransformed steroid receptor complexes. J Biol Chem 265: 22067–22070

    PubMed  CAS  Google Scholar 

  • Sanchez ER, Hirst M, Scherrer LC, et al. (1990) Hormone-free mouse glucocorticoid receptors overexpressed in Chinese hamster ovary cells are localized to the nucleus and are associated with both hsp70 and hsp90. J Biol Chem 265: 20123–20130

    PubMed  CAS  Google Scholar 

  • Sanchez Y, Lindquist SL (1990) Hsp l04 required for induced thermotolerance. Science 248: 1112–1115

    PubMed  CAS  Google Scholar 

  • Sarge KD, Murphy SP, Morimoto RI (1993) Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol 13: 1392–1407

    PubMed  CAS  Google Scholar 

  • Sciandra JJ, Subjeck JR (1984) Heat shock proteins and protection of proliferation and translation in mammalian cells. Cancer Res 44: 5188–5194

    PubMed  CAS  Google Scholar 

  • Skowyra D, Georgopoulos C, Zylicz M (1990) The E. coli DnaK gene product, the Hsp70 homolog, can reactivate heat-inactivated RNA polymerase in an ATP-dependent manner. Cell 62: 939–944

    PubMed  CAS  Google Scholar 

  • Sorger PK (1991) Heat shock factor and the heat shock response. Cell 65: 363–366

    PubMed  CAS  Google Scholar 

  • Stevenson MA, Minton KW, Hahn GM (1981) Survival and concavalin-A induced cap** in CHO-fibroblasts after exposure to hyperthermia, ethanol and x-irradiation. Radiat Res 86: 467–478

    PubMed  CAS  Google Scholar 

  • Tissieres A, Mitchell HK, Tracy U (1974) Protein synthesis in the salivary glands of Drosophila melanogaster. Relation to chromosome puffs. J Mol Biol 84: 389–398

    PubMed  CAS  Google Scholar 

  • Van Dongen G, Van de Zande L, Schamhart D, Van Wijk R (1984) Comparative studies on the heat-induced thermotolerance of protein synthesis and cell cycle division in synchronized mouse neuroblastoma cells. Int J Radiat Biol 46: 759–769

    Google Scholar 

  • Voellmy R (1985) The heat shock protein genes: a family of highly conserved genes with a superbly complex expression pattern. Bioessays 1: 213–217

    Google Scholar 

  • Wallen CA, Landis M (1990) Removal of excess nuclear protein from cells heated in different physiological states. Int J Hyperthermia 6: 87–95

    PubMed  CAS  Google Scholar 

  • Welch WJ (1990) The mammalian stress response: cell physiology and biochemistry of stress proteins. In: Morimoto RI, Tissieres A, Georgopoulos C (eds) Stress proteins in biology and medicine. Cold Spring Harbor Laboratory Press, New York, pp 223–278

    Google Scholar 

  • Wiech H, Büchner J, Zimmermann R, Jakob U (1992) Hsp90 chaperones protein folding in vitro. Nature 358: 169–170

    PubMed  CAS  Google Scholar 

  • Wiegant FAC, Van Bergen en Henegouwen PMP, Van Dongen G, Linnemans WAM (1987) Stress induced thermotolerance of the cytoskeleton of mouse neuroblastoma N2A cells and rat Reuber H35 hepatoma cells. Cancer Res 47: 1674–1680

    PubMed  CAS  Google Scholar 

  • Wittig S, Hensse S, Keitel C, Eisner C, Wittig B (1983) Heat shock gene expression is regulated during teratocarcinoma cell differentiation and early embryonic development. Dev Biol 96: 507–514

    PubMed  CAS  Google Scholar 

  • Yahara I, Iida H, Koyasu S (1986) A heat shock-resistant variant of Chinese hamster cell line constitutively expressing heat shock protein of Mr 90000 at high level. Cell Struct Funct 11: 65–73

    PubMed  CAS  Google Scholar 

  • Yih L-H, Huang H, Jan KY, Lee T-C (1991) Sodium arsenite induces ATP depletion and mitochondrial damage in HcLa cells. Cell Biol Int Rep 46: 253–264

    Google Scholar 

  • Yost HJ, Lindquist S (1986) RNA splicing is interrupted by heat shock and is rescued by heat shock protein synthesis. Cell 45: 185–193

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burgman, P., Nussenzweig, A., Li, G.C. (1995). Thermotolerance. In: Seegenschmiedt, M.H., Fessenden, P., Vernon, C.C. (eds) Thermoradiotherapy and Thermochemotherapy. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57858-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57858-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63382-9

  • Online ISBN: 978-3-642-57858-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation