Atomic and Molecular Beams in Chemical Physics: A Continuing Odyssey

  • Chapter
Atomic and Molecular Beams
  • 968 Accesses

Abstract

Introduction

This introductory review presents vignettes intended to convey to the non-specialist something of the style and scope of research with atomic and molecular beams. Necessarily, the episodes described are idiosyncratic and impressionistic, merely appetizers for the profuse smorgasbord of papers offered in this volume. Only a few pertinent references and kindred reviews are cited, as the smorgasbord provides ample guidance to to a burgeoning literature. In a typical format, replete with terse descriptions, the appetizer menu reads:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D. R. Herschbach, Faraday Disc. Chem. Soc. 55, 233 (1973).

    Article  Google Scholar 

  2. D. R. Herschbach, Angew. Chem. Int’l. Ed. Engl. 26, 1221 (1987).

    Article  Google Scholar 

  3. [3] D. R. Herschbach, Faraday Disc. Chem. Soc. 84, 465 (1987).

    Article  Google Scholar 

  4. D. R. Herschbach, in The Chemical Bond, edited by A. Zewail (Academic Press, New York, 1992), p. 175.

    Google Scholar 

  5. D. R. Herschbach, in Chemical Research-2000 and Beyond: Challenges and Visions, edited by P. Barkan, (ACS Books/Oxford Univ. Press, New York, Oxford, 1998) p.113.

    Google Scholar 

  6. D. Herschbach, Rev. Mod. Phys. 71, S4ll (1999).

    Article  Google Scholar 

  7. N. F. Ramsey, Molecular Beams (Oxford University Press, New York, Oxford, 1956). See also the Nobel e-Museum on the web at www.nobel.se/.

    Google Scholar 

  8. B. Friedrich and D. Herschbach, Daedalus 127, 165 (1998).

    Google Scholar 

  9. C. H. Townes, How the Laser Happened, (Oxford University Press, New York, Oxford, 1999).

    Google Scholar 

  10. S. J. Riley, P. E. Siska, and D. R. Herschbach, Chem. Soc. Faraday Disc. 67, 27 (1979).

    Article  Google Scholar 

  11. P. B. Moon, C. T. Rettner, and J. P. Simons, Faraday Disc. 77, 630(1977).

    Google Scholar 

  12. R. D. Levine and R. B. Bernstein, Molecular Reaction Dynamics, (2nd Ed., Oxford Univ. Press, New York, Oxford, 1987).

    Google Scholar 

  13. J. B. Fenn, Ann. Rev. Phys. Chem. 47, 1 (1996).

    Article  ADS  Google Scholar 

  14. W. R. Gentry and C. F. Giese, Rev. Sci. Instrum. 49, 595 (1978).

    Article  ADS  Google Scholar 

  15. R. Campargue, J. Phys. Chem. 88, 4466 (1984).

    Article  Google Scholar 

  16. R. E. Smalley, L. Wharton, and D. H. Levy, J. Chem. Phys. 63, 4977 (1975)

    Article  ADS  Google Scholar 

  17. D. H. Levy, Annu. Rev. Phys. Chem. 31, 197 (1980).

    Article  ADS  Google Scholar 

  18. X. Shi, D. R. Herschbach, D. R. Worsnop, and C. E. Kolb, J. Phys. Chem. 97, 2113 (1993).

    Article  Google Scholar 

  19. D. R. Herschbach, C. E. Kolb, D. R. Worsnop, and X. Shi, Nature 356, 414 (1992).

    Article  ADS  Google Scholar 

  20. S. Joo, D. R. Worsnop, C. E. Kolb, S. K. Kim, and D. R. Herschbach, J. Phys. Chem. 103, 3193 (1999).

    Article  Google Scholar 

  21. B. Friedrich and D. R. Herschbach, Phys. Chem. Chem. Phys. 2, 419 (2000).

    Article  Google Scholar 

  22. J. J. Larsen, K. Hald, N. Bjerre, H. Stapelfeldt, and T. Seideman, Phys. Rev. Lett. 85, 2470 (2000).

    Article  ADS  Google Scholar 

  23. P. Thaddeus, M. C. McCarthy, M. J. Travers, C. A. Gottlieb, and W. Chen, Faraday Discuss. 109, 1 (1998).

    Article  Google Scholar 

  24. W. Klemperer, Ann. Rev. Phys. Chem. 46, 1 (1995); Proceedings of the Royal Institution, London, 209 (1997).

    Article  ADS  Google Scholar 

  25. B. H. Mahan, Accts. Chem. Res. 8, 55 (1975).

    Article  Google Scholar 

  26. A. W. Castleman and K. H. Bowen, J. Phys. Chem. 100, 12911 (1996).

    Article  Google Scholar 

  27. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic Press, New York, 1996).

    Google Scholar 

  28. E. A. Rohlfìng, D. M. Cox, and A. Kaldor, J. Chem. Phys. 81, 3322 (1984).

    Article  ADS  Google Scholar 

  29. S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, and C. M. Lieber, Nature 394, 52 (1998).

    Article  ADS  Google Scholar 

  30. J. M. Mestdagh, M. A. Gaveau, C. Gee, O. Sublemontier, and J. P. Visticot, Int’l Rev. Phys. Chem. 16, 215 (1997).

    Article  Google Scholar 

  31. T. Raz and R. D. Levine., J. Phys. Chem. 99, 7495 (1995).

    Article  Google Scholar 

  32. K. K. Lehmann and G. Scoles, Science 279, 2065 (1998).

    Article  Google Scholar 

  33. M. Hartmann, R. E. Miller, J. P. Toennies, and A. F. Vilesov, Science 272, 1631 (1996).

    Article  ADS  Google Scholar 

  34. S. Grebenev, J. P. Toennies, and A. F. Vilesov, Science 279, 2083 (1998).

    Article  ADS  Google Scholar 

  35. L. Shebaro, S. R. Bhalotra, and D. R. Herschbach, J. Phys. Chem. 101, 6775 (1997).

    Article  Google Scholar 

  36. L. Romm and G. A. Somorjai, Catalysis Lett. 64, 85 ( 2000).

    Article  Google Scholar 

  37. D. S. Y. Hsu, G. M. McClelland, and D. R. Herschbach, J. Chem. Phys. 61, 4927 (1974).

    Article  ADS  Google Scholar 

  38. G. M. McClelland and D. R. Herschbach, J. Phys. Chem. 91, 5509(1987).

    Article  Google Scholar 

  39. D. A. Case and D. R. Herschbach, Mol. Phys. 30, 1537 (1975).

    Article  ADS  Google Scholar 

  40. J. D. Barnwell, J. G. Loeser, and D. R. Herschbach, J. Phys. Chem. 87, 2781 (1983).

    Article  Google Scholar 

  41. S. K. Kim and D. R. Herschbach, Faraday Disc. Chem. Soc. 84, 159(1988).

    Article  Google Scholar 

  42. D. A. Case, G. M. McClelland, and D. R. Herschbach, Mol. Phys. 35, 541 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  43. R. B. Bernstein, D. R. Herschbach, and R. D. Levine, J. Phys. Chem. 91, 5365 (1987).

    Article  Google Scholar 

  44. A. J. Orr-Ewing, W. R. Simpson, T. P. Rakitzis, S. A. Kandel, and R. N. Zare, J. Chem. Phys. 106, 5961 (1997); 107, 9382, 9392 (1997).

    Article  ADS  Google Scholar 

  45. M. P. de Miranda, D. C. Clary, J. F. Castillo, and D. E. Manolopoulos, J. Chem. Phys. 108, 3142 (1998).

    Article  ADS  Google Scholar 

  46. B. Priedrich, D. P. Pullman, and D. R. Herschbach, J. Phys. Chem. 95, 8118 (1991).

    Article  Google Scholar 

  47. H. J. Loesch, Ann. Revs. Phys. Chem. 46, 555 (1995).

    Article  ADS  Google Scholar 

  48. B. Friedrich and D. Herschbach, Comments At. Mol. Phys. 32, 47 (1995); Int’l. Revs. Phys. Chem. 15, 325 (1996).

    Google Scholar 

  49. Int’l. Revs. Phys. Chem. 15, 325 (1996).

    Article  Google Scholar 

  50. B. Friedrich and D. Herschbach, Phys. Rev. Lett. 74, 4623 (1995); J. Phys. Chem. 99, 15686 (1995).

    Article  ADS  Google Scholar 

  51. B. Friedrich D. Herschbach J. Phys. Chem. 99, 15686 (1995).

    Article  Google Scholar 

  52. J. J. Larsen, H. Sakai, C. P. Safvan, I. Wendt-Larsen, and H. Stapelfeldt, J. Chem. Phys. 111, 7774 (1999).

    Article  ADS  Google Scholar 

  53. B. Friedrich and D. Herschbach, Z. Phys. D 36, 221 (1996).

    Article  ADS  Google Scholar 

  54. B. Friedrich and D. Herschbach, J. Phys. Chem. A 103, 10280 (1999).

    Article  Google Scholar 

  55. D. T. Moore, L. Oudejans, and R. E. Miller, J. Chem. Phys. 110, 197 (1999).

    Article  ADS  Google Scholar 

  56. A. Slenczka, J. Phys. Chem. A 101, 7657 (1997); Phys. Rev. Lett. 80, 2566 (1998); Chem. Eur. J. 5, 1006, 1136 (1999).

    Article  Google Scholar 

  57. A. Slenczka Phys. Rev. Lett. 80, 2566 (1998)

    Article  ADS  Google Scholar 

  58. A. Slenczka ; Chem. Eur. J. 5 1006 1990

    Google Scholar 

  59. S. Chu, Rev. Mod. Phys. 70, 685 (1998); C. N. Cohen-Tannoudji, ibid.70, 707, (1998); W. D. Phillips, ibid. 70, 721 (1998).

    Article  ADS  Google Scholar 

  60. C. N. Cohen-Tannoudji, ibid.70, 707, (1998)

    ADS  Google Scholar 

  61. W. D. Phillips, ibid. 70, 721 (1998).

    ADS  Google Scholar 

  62. D. G. Fried, T. C. Killian, L. Willmann, D. Candhuis, S. C. Moss, D. Kleppner, and T. J. Greytak, Phys. Rev. Lett. 81, 3811 (1998).

    Article  ADS  Google Scholar 

  63. L. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).

    Article  ADS  Google Scholar 

  64. C. E. Wieman, D. E. Pritchard, and D. Wineland, Rev. Mod. Phys.71, S263 (1999).

    Article  Google Scholar 

  65. H. J. Metcalf and P. van der Straten, Laser Cooling and Trap** (Springer, New York, 1999).

    Google Scholar 

  66. J. M. Doyle and B. Friedrich, Nature 401, 749 (1999).

    Article  ADS  Google Scholar 

  67. R. Wynar, R. S. Freeland, D. J. Han, C. Tyu, and D. J. Heinzen, Science 287, 1016 (2000).

    Article  ADS  Google Scholar 

  68. J. D. Weinstein, R. deCarvalho, T. Guillet, B. Friedrich, and J. M. Doyle, Nature 395, 148 (1998).

    Article  ADS  Google Scholar 

  69. H. L. Bethlem, G. Berden, F. M. H. Crompvoets, R. T. Jongma, A. J. A. van Roij, and G. Meijer, Nature 406, 491 (2000).

    Article  ADS  Google Scholar 

  70. T. Seideman, J. Chem. Phys. 106, 2881 (1996); 107, 10420 (1997).

    Article  ADS  Google Scholar 

  71. T. Seideman, J. Chem. Phys. 106, 2881 (1996); 107, 10420 (1997).

    Article  ADS  Google Scholar 

  72. H. Stapelfeldt, H. Sakai, E. Constant, and P. B. Corkum, Phys. Rev. Lett. 79, 2787 (1997).

    Article  ADS  Google Scholar 

  73. B. Friedrich, Phys. Rev. A 61, 025403 (2000).

    Article  ADS  Google Scholar 

  74. M. Gupta and D. Herschbach, J. Phys. Chem. A 103, 10670 (1999).

    Article  Google Scholar 

  75. D. P. Katz, J. Chem. Phys. 107, 8491 (1997).

    Article  ADS  Google Scholar 

  76. T. Takayanagi, N. Masaki, K. Nakamura, M. Okamoto, S. Sata, and G. C. Schatz, J. Chem. Phys. 86, 6133 (1987); 90, 1641 (1989).

    Article  ADS  Google Scholar 

  77. T. Takayanagi, N. Masaki, K. Nakamura, M. Okamoto, S. Sata, and G. C. Schatz, J. Chem. Phys 90, 1641 (1989)

    Article  ADS  Google Scholar 

  78. S. Baer, D. Fleming, D. Arseneau, M. Senba, and A. Gonzalez, in Isotope Effects in Gas-Phase Chemistry, edited by J. A. Kaye (ACS Symposium Series No. 502, American Chemical Society, Washington, D. C, 1992), p. 111.

    Google Scholar 

  79. V. A. Benderskii, D. E. Makarov, C. A. Wight, Chemical Dynamics at Low Temperatures (John Wiley & Sons, New York, 1994).

    Google Scholar 

  80. R. N. Zare, Science 279, 1875 (1998).

    Article  ADS  Google Scholar 

  81. R. J. Gordon and S. A. Rice, Ann. Rev. Phys. Chem. 48, 601 (1997).

    Article  ADS  Google Scholar 

  82. P. Brumer and M. Shapiro, Chem. Phys. Lett. 126, 541 (1986)

    Article  ADS  Google Scholar 

  83. R. J. Gordon and S. A. Rice J. Chem. Soc. Faraday Trans. 93, 1263 (1997).

    Article  Google Scholar 

  84. D. J. Tannor and S. A. Rice, J. Chem. Phys. 83, 5013 (1985).

    Article  ADS  Google Scholar 

  85. R. Kosloff, S. A. Rice, P. Gaspard, S. Tersigni, and D. J. Tannor, Chem. Phys. 139, 201 (1989).

    Article  Google Scholar 

  86. A. P. Peirce, M. A. Dahleh, and H. Rabitz, Phys. Rev. A 37, 4950 (1988); 42, 1065 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  87. A. P. Peirce, M. A. Dahleh, and H. Rabitz, Phys. Rev. A 42, 1065 (1990)

    Article  ADS  Google Scholar 

  88. R. S. Judson and H. Rabitz, Phys. Rev. Lett. 68, 1500 (1992).

    Article  ADS  Google Scholar 

  89. C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, Chem. Phys. Lett. 289, 151 (1997).

    Article  Google Scholar 

  90. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).

    Article  ADS  Google Scholar 

  91. D. Herschbach, Nature 405, 902 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Herschbach, D. (2001). Atomic and Molecular Beams in Chemical Physics: A Continuing Odyssey. In: Campargue, R. (eds) Atomic and Molecular Beams. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56800-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56800-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63150-4

  • Online ISBN: 978-3-642-56800-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation