Mathematical Challenges from Molecular Evolution

  • Chapter
Mathematics Unlimited — 2001 and Beyond
  • 2199 Accesses

Abstract

The first documented revolution in biology took place last century when Charles Darwin’s centennial book on the origin of species was published 1859 in England [60]. The only contribution to nineteenth century evolutionary biology, which is worth mentioning from the point of view of mathematics, however, was Gregor Mendel’s statistical analysis of plant crossing experiments [6, 61]. Biology was not yet ripe to accept the usefulness of mathematical models and, indeed, Mendel’s work did not reach the attention of evolutionary biologists. As a matter of fact his studies had to be rediscovered at the beginning of the twentieth century. The revival of controlled cross-breeding led to genetics, a biological discipline in its own rights, but the geneticists were at odds with the selectionists. It took almost half a century before Darwin’s principle of variation and selection and Mendel’s laws of inheritance were united in form of the synthetic theory [45, 59]. Populations genetics, nevertheless, had been developed already in the thirties by the three scholars Ronald Fisher, John Haldane, and Sewall Wright. Thus, the unification of genetics and natural selection has first been successful in terms of a mathematical model. Ronald Fisher was a mathematician and apart from his works in theoretical biology he made also important contributions to differential equations, probability theory and stochastic processes. Most relevant for this chapter, however, is Fisher’s selection equation which refers to sexual reproduction in large populations, random mating, and frequent recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
EUR 9.99
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 105.49
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. T. Batey, R. P. Rambo, and J. A. Doudna: Tertiary motifs in structure and folding of RNA. Angew. Chem. Int. Ed. 38, 2326–2343 (1999)

    Article  Google Scholar 

  2. C. K. Biebricher and W. C. Gardiner: Molecular evolution of RNA in vitro. Biophys. Chem. 66, 179–192 (1997)

    Article  Google Scholar 

  3. K. Binder: Spin glasses: Experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 58(4), 801–976 (1986)

    Article  Google Scholar 

  4. J. Cupal, S. Kopp, and P. F. Stadler: RNA shape space topology. Alife 6, 3–23 (2000)

    Google Scholar 

  5. J. Cupal, P. Schuster, and P. F. Stadler: Topology in phenoptype space. In: Computer Science in Biology, GCB’99 Proceedings. Univ. Bielefeld, Hannover 1999, pp. 9–15

    Google Scholar 

  6. G. De Beer: Mendel, Darwin, and Fisher. Notes and Records of the Roy. Soc. London 19, 192–226 (1964)

    Article  Google Scholar 

  7. L. Demetrius, P. Schuster, and K. Sigmund: Polynucleotide evolution and branching processes. Bull. Math. Biol. 47, 239–262 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  8. B. Derrida and L. Peliti: Evolution in a flat fitness landscape. Bull. Math. Biol. 53, 355–382 (1991)

    Article  MATH  Google Scholar 

  9. K. A. Dill, S. Bromberg, K. Yue, K. M. Fiebrig, D. P. Yee, P. D. Thomas, and H. S. Chan: Principles of protein folding - A perspective from simple exact models. Protein Science 4, 561–602 (1995)

    Article  Google Scholar 

  10. E. Domingo: Biological significance of viral quasispecies. Viral Hepatitis Rev. 2, 247–261 (1996)

    Google Scholar 

  11. E. Domingo and J. J. Holland: RNA virus mutations and fitness for survival. Ann. Rev. Microbiol. 51, 151–178 (1997)

    Article  Google Scholar 

  12. W. Ebeling, A. Engel, B. Esser, and R. Feistel: Diffusion and reaction in random media and models of evolution processes. J. Stat. Phys. 37, 369–384 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  13. M. Eigen: Selforganization of matter and the evolution of biological macro-molecules. Naturwissenschaften 58, 465–523 (1971)

    Article  Google Scholar 

  14. M. Eigen and W. C. Gardiner: Evolutionary Molecular Engineering based on RNA Replication. Pure Appl. Chem. 56, 967–978 (1984)

    Article  Google Scholar 

  15. M. Eigen, J. McCaskill, and P. Schuster: The molecular quasispecies. Adv. Chem. Phys. 75, 149–263 (1989)

    Google Scholar 

  16. M. Eigen and P. Schuster: The hypercycle. A principle of natural self-organization. Part A: Emergence of the hypercycle. Naturwissenschaften 64, 541–565 (1977)

    Article  Google Scholar 

  17. E. H. Ekland, J. W. Szostak, and D. P. Bartel: Structurally complex and highly active RNA ligases derived from random RNA sequences. Science 269, 364–370 (1995)

    Article  Google Scholar 

  18. S. F. Elena, V. S. Cooper, and R. E. Lenski: Punctuated evolution caused by selection of rare beneficial mutants. Science 272, 1802–1804 (1996)

    Article  Google Scholar 

  19. A.D. Ellington: RNA selection. Aptamers achieve the desired recognition. Curr. Biol. 4, 427–429 (1994)

    Article  Google Scholar 

  20. C. Flamm, W. Fontana, I. L. Hofacker, and P. Schuster: Elementary step dynamics of RNA folding. RNA 6, 325–338 (2000)

    Article  Google Scholar 

  21. W. Fontana and L. W. Buss: ’The arrival of the fittest’: Toward a theory of biological organization. Bull. Math. Biol. 56, 1–64 (1994)

    MATH  Google Scholar 

  22. W. Fontana, D. A. M. Konings, P. F. Stadler, and P. Schuster: Statistics of RNA secondary structures. Biopolymers 33, 1389–1404 (1993)

    Article  Google Scholar 

  23. W. Fontana and P. Schuster: Continuity in evolution. On the nature of transitions. Science 280, 1451–1455 (1998)

    Article  Google Scholar 

  24. W. Fontana and P. Schuster: Sha** space. The possible and the attainable in RNA genotype-phenotype map**. J. Theor. Biol. 194, 491–515 (1998)

    Article  Google Scholar 

  25. S. A. Frank: Population and quantitative genetics of regulatory networks. J. Theor. Biol. 197, 281–294 (1999)

    Article  Google Scholar 

  26. H. Frauenfelder, S. G. Sligar, and P. G. Wolynes: The energy landscapes and motions of proteins. Science 254, 1598–1603 (1991)

    Article  Google Scholar 

  27. S. Gavrilets: Evolution and speciation on holey adaptive landscapes. TREE 12(8), 307–312 (1997)

    Google Scholar 

  28. S. Gavrilets and J. Gravner: Percolation on the fitness hypercube and the evolution of reproductive isolation. J. Theor. Biol. 184, 51–64 (1997)

    Article  Google Scholar 

  29. S. Gavrilets, H. Li, and M. D. Vose: Rapid parapatric speciation on holey adaptive landscapes. Proc. Roy. Soc. Lond. B 265, 1483–1489 (1998)

    Article  Google Scholar 

  30. L. Gold, C. Tuerk, P. Allen, J. Binkley, D. Brown, L. Green, S. MacDougal, D. Schneider, D. Tasset, and S. R. Eddy: RNA: The shape of things to come. In: R. F. Gesteland and J. F. Atkins (eds.) The RNA World, pages 497–509. Cold Spring Harbor Laboratory Press, Plainview, NY 1993

    Google Scholar 

  31. W. Grüner, R. Giegerich, D. Strothmann, C. Reidys, J. Weber, I.L. Hofacker, and P. Schuster: Analysis of RNA sequence structure maps by exhaustive enumeration. I. Neutral networks. Mh. Chemie 127, 355–374 (1996)

    Google Scholar 

  32. W. Grüner, R. Giegerich, D. Strothmann, C. Reidys, J. Weber, I. L. Hofacker, and P. Schuster: Analysis of RNA sequence structure maps by exhaustive enumeration. II. Structures of neutral networks and shape space covering. Mh. Chemie 127, 375–389 (1996)

    Google Scholar 

  33. R. W. Hamming: Error detecting and error correcting codes. Bell Syst. Tech. J. 29, 147–160 (1950)

    Article  MathSciNet  Google Scholar 

  34. I. L. Hofacker, W. Fontana, P. F. Stadler, L. S. Bonhoeffer, M. Tacker, and P. Schuster: Fast folding and comparison of RNA secondary structures. Mh. Chem. 125, 167–188 (1994)

    Google Scholar 

  35. I. L. Hofacker, P. Schuster, and P. F. Stadler: Combinatorics of RNA secondary structures. Discr. Appl. Math. 88, 207–237 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  36. M. A. Huynen, P. F. Stadler, and W. Fontana: Smoothness within ruggedness: The role of neutrality in adaptation. Proc. Natl. Acad. Sci. USA 93, 397–401 (1996)

    Article  Google Scholar 

  37. B. L. Jones and H. K. Leung: Stochastic analysis of a nonlinear model for selection of biological macromolecules. Bull. Math. Biol. 43, 665–680 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  38. G. F. Joyce: Amplification, mutation and selection of catalytic RNA. Gene 82, 83–87 (1989)

    Article  Google Scholar 

  39. H. F. Judson: The Eighth Day of Creation. The Makers of the Revolution in Biology. Jonathan Cape, London 1979

    Google Scholar 

  40. S. A. Kauffman: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22, 437–67 (1969)

    Article  MathSciNet  Google Scholar 

  41. S. A. Kauffman: The Origins of Order. Self-Organization and Selection in Evolution. Oxford University Press, Oxford, UK 1993

    Google Scholar 

  42. S. A. Kauffman and S. Levin: Towards a general theory of adaptive walks on rugged landscapes. J. Theor. Biol. 128, 11–45 (1987)

    Article  MathSciNet  Google Scholar 

  43. M. Kimura: The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge, UK 1983

    Book  Google Scholar 

  44. E. Mayr: This is Biology. The Science of the Living World. The Belknap Press of Harvard University Press, Cambridge, Mass. 1997

    Google Scholar 

  45. E. Mayr and W. B. Provine (eds.): The Evolutionary Synthesis. Perspectives of the Unification of Biology. Harvard University Press, Cambridge, Mass. 1980

    Google Scholar 

  46. H. H. McAdams and A. Arkin: Simulation of prokaryotic genetic circuits. Annu. Rev. Biophys. Biomol. Struct. 27, 199–224 (1998)

    Article  Google Scholar 

  47. H. H. McAdams and A. Arkin: Gene regulation: Towards a circuit engineering discipline. Current Biology 10, R318-R320 (2000)

    Article  Google Scholar 

  48. J. S. McCaskill: A stochastic theory of macromolecular evolution. Biol. Cybern. 50, 63–73 (1984)

    Article  MATH  Google Scholar 

  49. J. S. McCaskill: The equilibrium partition function and base pair binding probabilities for RNA secondary structures. Biopolymers 29, 1105–1119 (1990)

    Article  Google Scholar 

  50. L. Mendoza, D. Thieffry, and E. R. Alvarez-Buylla: Genetic control of flower morphogenesis in Arabidopsis thaliana: A logical analysis. Bioinformatics 15, 593–606 (1999)

    Article  Google Scholar 

  51. T. Mestl, E. Plahte, and S. W. Omholt: A mathematical framework for describing and analysing gene regulatory networks. J. Theor. Biol. 176, 291–300 (1995)

    Article  MATH  Google Scholar 

  52. A. Neumaier: Molecular modeling of proteins and mathematical prediction of protein structure. SIAM Rev. 39, 407–460 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  53. T. Ohta: The nearly neutral theory of molecular evolution. Annu. Rev. Ecol. Syst. 23, 263–286 (1992)

    Article  Google Scholar 

  54. J. N. Onuchic, Z. Luthey-Schulten, and P. G. Wolynes: Theory of protein folding: The energy landscape perspective. Annu. Rev. Phys. Chem. 48, 539–594 (1997)

    Article  Google Scholar 

  55. D. Papadopoulos, D. Schneider, J. Meier-Eiss, W. Arber, R. E. Lenski, and M. Blot: Genomic evolution during a 10 000-generation experiment with bacteria. Proc. Natl Acad. Sci. USA 96, 3807–3812 (1999)

    Article  Google Scholar 

  56. A. T. Perrotta and M. D. Been: A toggle duplex in hepatitis delta virus self-cleaving RNA that stabilizes an inactive and a salt-dependent pro-active ribozyme conformation. J. Mol. Biol. 279, 361–373 (1998)

    Article  Google Scholar 

  57. C. Reidys, P. F. Stadler, and P. Schuster: Generic properties of combinatory maps. Neutral networks of RNA secondary structure. Bull. Math. Biol. 59, 339–397 (1997)

    Article  MATH  Google Scholar 

  58. C. M. Reidys: Random induced subgraphs of generalized n-cubes. Adv. Appl. Math. 19, 360–377 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  59. W. E. Reif, T. Junker, and U. Hoßfeld: The synthetic theory of evolution: General problems and the german contribution to the synthesis. Theory Bioscience 119, 41–91 (2000)

    Article  Google Scholar 

  60. M. Ruse: The Darwinian Revolution. The University of Chicago Press, Chicago, IL 1979

    Google Scholar 

  61. K. Sander: Darwin und Mendel. Wendepunkte im biologischen Denken. Biologie i. u. Zeit 18, 161–167 (1988)

    Article  Google Scholar 

  62. E. A. Schultes and D. P. Battel: One sequence, two ribozymes: Implications for the emergence of new ribozyme folds. Science 289, 448–52 (2000)

    Article  Google Scholar 

  63. P. Schuster: How to search for RNA structures. Theoretical concepts in evolutionary biotechnology. J. Biotechnol. 41, 239–257 (1995)

    Article  Google Scholar 

  64. P. Schuster: Landscapes and molecular evolution. Physica D 107, 351–365 (1997)

    Article  Google Scholar 

  65. P. Schuster: Evolution of molecular phenotypes — A physicist’s view of Darwin’s principle. In: D. Helbing, H. J. Herrmann, M. Schreckenberg, and D. E. Wolf (eds.) Traffic and Granular Flow ’99: Social, Traffic, and Granular Dynamics. Springer, Berlin 2000, pp. 109–132

    Chapter  Google Scholar 

  66. P. Schuster: Taming combinatorial explosions. Proc. Natl. Acad. Sci. USA 97, 7678–7680 (2000)

    Article  Google Scholar 

  67. P. Schuster, W. Fontana, P. F. Stadler, and I. L. Hofacker: From sequences to shapes and back: A case study in RNA secondary structures. Proc. Roy.Soc. Lond. B 255, 279–284 (1994)

    Article  Google Scholar 

  68. P. Schuster and P. F. Stadler: Discrete models of biopolymers. In: M. J. C. Crabbe, M. Drew, and A. Konopka (eds.), Handbook of Computational Chemistry. Marcel Dekker, New York 2000 In press.

    Google Scholar 

  69. P. Schuster and J. Swetina: Stationary mutant distribution and evolutionary optimization. Bull. Math. Biol. 50, 635–660 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  70. S. Shashahani: A new mathematical framework for the study of linkage and selection. Mem. Am. Math. Soc. 211 (1979)

    Google Scholar 

  71. D. Sherrington and S. Kirkpatrick: Solvable model of a spin-glass. Phys. Rev. Lett. 35(26), 1792–1796 (1975)

    Article  Google Scholar 

  72. S. Spiegelman: An approach to the experimental analysis of precellular evolution. Quart. Rev. Biophys. 4, 213–253 (1971)

    Article  Google Scholar 

  73. P.F. Stadler: Correlation in landscapes of combinatorial optimization problems. Europhys. Lett. 20, 479–482 (1992)

    Article  Google Scholar 

  74. P. F. Stadler: Linear operators on correlated landscapes. J. Phys. I France 4, 681–696 (1994)

    Article  Google Scholar 

  75. P.F. Stadler: Towards a theory of landscapes. In: R. Lopez-Pena, R. Capovilla, R. Garcćia-Pelayo, H. Waelbroeck, and F. Zertuche (eds.) Complex Systems and Binary Networks. Springer, Berlin, New York 1995, pp. 77–163

    Google Scholar 

  76. P. F. Stadler and R. Happel: Correlation structure of the landscape of the graph-bipartitioning-problem. J. Phys. A: Math. Gen. 25, 3103–3110 (1992)

    Article  MathSciNet  Google Scholar 

  77. P.F. Stadler and R. Happel: Random field models for fitness landscapes. J. Math. Biol. 38, 435–478 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  78. P. F. Stadler and W. Schnabl: The landscape of the travelling salesman problem. Phys. Lett. A 161, 337–344 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  79. J. Swetina: First and second moments and the mean hamming distance in a stochastic replication-mutation model for biological macromolecules. J. Math. Biol. 27, 463–483 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  80. J. W. Szostak and A. D. Ellington: In vitro selection of functional RNA sequences. In: R.F. Gesteland and J.F. Atkins (eds.), The RNA World, pages 511–533. Cold Spring Harbor Laboratory Press, Plainview, NY 1993

    Google Scholar 

  81. R. Thomas and R. D’Ari: Biological Feedback. CRC Press, Boca Raton, Florida 1990

    MATH  Google Scholar 

  82. E. van Nimwegen, J. P. Crutchfield, and M. Mitchell: Finite populations induce metastability in evolutionary search. Phys. Lett. A 229, 144–150 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  83. A.E. Walter, D.H. Turner, J. Kim, M.H. Lyttle, P. Müller, D.H. Mathews, and M. Zuker: Co-axial stacking of helixes enhances binding of oligoribonucleotides and improves predictions of RNA folding. Proc. Natl. Acad. Sci. USA 91, 9218–9222 (1994)

    Article  Google Scholar 

  84. M. S. Waterman: Secondary structure of single-stranded nucleic acids. Adv. Math. Suppl. Studies 1, 167–212 (1978)

    MATH  MathSciNet  Google Scholar 

  85. A. Watts and G. Schwarz, editors: Evolutionary Biotechnology — From Theory to Experiment. Biophysical Chemistry, vol. 66/2–3. Elesvier, Amsterdam 1997

    Google Scholar 

  86. A. Wernitznig, C. Flamm, and P. Schuster: RNA evolution in silico: The flow reactor. Preprint, 2000

    Google Scholar 

  87. D. S. Wilson and J. W. Szostak: In vitro selection of functional nucleic acids. Annu. Rev. Biochem. 68, 611–647 (1999)

    Article  Google Scholar 

  88. S. Wright: The roles of mutation, inbreeding, crossbreeding and selection in evolution. In: D. F. Jones (ed.) Int. Proceedings of the Sixth International Congress on Genetics, vol. 1. 1932, pp. 356–366

    Google Scholar 

  89. S. Wuchty, W. Fontana, I. L. Hofacker, and P. Schuster: Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers 49, 145–165 (1999)

    Article  Google Scholar 

  90. G. K. Zipf: Human Behaviour and the Principle of Least Effort. Addison-Wesley, Reading, Mass. 1949

    Google Scholar 

  91. M. Zuker: On finding all suboptimal foldings of an RNA molecule. Science 244, 48–52 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  92. M. Zuker and P. Stiegler: Optimal computer folding of larger RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Research 9, 133–148 (1981)

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schuster, P. (2001). Mathematical Challenges from Molecular Evolution. In: Engquist, B., Schmid, W. (eds) Mathematics Unlimited — 2001 and Beyond. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56478-9_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56478-9_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63114-6

  • Online ISBN: 978-3-642-56478-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation