Mechanisms of the Modulation of Membrane Interfacial Enzyme Catalysis by Non-lamellar Forming Lipids: Comparison with the Behavior of a Fluorescent Probe in Membranes

  • Chapter
Fluorescence Spectroscopy, Imaging and Probes

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 2))

Abstract

The activities of several membrane proteins are modulated by the presence of non-lamellar forming lipids. Although several proteins are activated by the presence of these lipids, the molecular mechanism by which this activation occurs is different for different proteins. We have studied two enzymes that are activated by non-lamellar forming lipids in different ways; protein kinase C (PKC) and CTP:phosphocholine cytidylyltransferase (CT). CT is the enzyme that regulates the rate of synthesis of phosphatidylcholine. For many lipid systems, there is a quantitative correlation between the calculated curvature strain of the membrane and the activation of this enzyme. For many lipid systems, including liposomes containing a series of homologous di-18:l phosphatidylethanolamines, there is a quantitative correlation between the extent of activation of CT and the curvature strain in the membrane. In contrast, the order in which this series of di-18:l phosphatidylethanolamines enhances the activity of protein kinase C does not correlate with membrane curvature strain. However, the order in which these lipids affect the quenching of the fluorescent probe 4-[(n-dodecylthio)-methyl]-7-(N,N-dimethylamino)-coumarin by doxyl groups positioned in the acyl chain region of the membrane is well correlated with the extent of activation of protein kinase C. This fluorescent probe is monitoring a property of the membrane that is affected by the presence of non-lamellar forming lipids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 52.74
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Epand RM, Stevenson C, Bruins R, Schram V, Glaser M (1998) The chirality of phosphatidylserine and the activation of protein kinase C. Biochemistry 37:12068–12073

    Article  CAS  Google Scholar 

  2. Garab G, Lohner K, Laggner P, Farkas T (2000) Self-regulation of the lipid content of membranes by non-bilayer lipids: a hypothesis. Trends Plant Sci 5:489–494

    Article  CAS  Google Scholar 

  3. Morein S, Andersson A, Rilfors L, Lindblom G (1996) Wild-type Escherichia coli cells regulate the membrane lipid composition in a “window” between gel and non-lamellar structures. J Biol Chem 271:6801–6809

    Article  CAS  Google Scholar 

  4. Osterberg F, Rilfors L, Wieslander A, Lindblom G, Gruner SM (1995) Lipid extracts from membranes of Acholeplasma laidlawii A grown with different fatty acids have a nearly constant spontaneous curvature. Biochim Biophys Acta 1257:18–24

    Article  CAS  Google Scholar 

  5. Vikström S, Li L, Karlsson OP, Wieslander A (1999) Key role of the diglucosyldia-cylglycerol synthase for the nonbilayer-bilayer lipid balance of Acholeplasma laidlawii membranes. Biochemistry 38:5511–5520

    Article  Google Scholar 

  6. Brown MF (1994) Modulation of rhodopsin function by properties of the membrane bilayer. Chem Phys Lipids 73:159–180

    Article  CAS  Google Scholar 

  7. Escriba PV, Ozaita A, Ribas C, Miralles A, Fodor E, Farkas T, Garcia-Sevilla JA (1997) Role of lipid polymorphism in G protein-membrane interactions: nonlamellarprone phospholipids and peripheral protein binding to membranes. Proc Natl Acad Sci USA 94:11375–11380

    Article  CAS  Google Scholar 

  8. Epand RM, Lester DS (1990) The role of membrane biophysical properties in the regulation of protein kinase C activity. Trends Pharmacol Sci 11:317–320

    Article  CAS  Google Scholar 

  9. Attard GS, Templer RH, Smith WS, A.N.Hunt, Jackowski S (2000) Modulation of CTP:phosphocholine cytidylyltransferase by membrane curvature elastic stress. Proc Natl Acad Sci USA 97:9032–9036

    Article  CAS  Google Scholar 

  10. Davies SMA, Epand RM, Kraayenhof R, Cornell RB (2001) Regulation of CTP:phosphocholine cytidylyltransferase activity by the physical properties of lipid membranes: an important role for stored curvature strain energy. Biochemistry 40: 10522–10531

    Article  CAS  Google Scholar 

  11. Toker A (1998) Signaling through protein kinase C. Front Biosci 3:D1134–D1147.

    CAS  Google Scholar 

  12. Epand RM (1985) Diacylglycerols, lysolecithin, or hydrocarbons markedly alter the bilayer to hexagonal phase transition temperature of phosphatidylethanolamines. Biochemistry 24:7092–7095

    Article  CAS  Google Scholar 

  13. Epand RM (1987) The relationship between the effects of drugs on bilayer stability and on protein kinase C activity. Chem Biol Interact 63:239–247

    Article  CAS  Google Scholar 

  14. Epand,R.M., R.F.Epand, B.T.Leon, F.M.Menger, and J.F.Kuo. 1991. Evidence for the regulation of the activity of protein kinase C through changes in membrane properties. Biosci Rep 11:59–64

    Article  CAS  Google Scholar 

  15. Mosior M, Golini ES, Epand RM (1996) Chemical specificity and physical properties of the lipid bilayer in the regulation of protein kinase C by anionic phospholipids: evidence for the lack of a specific binding site for phosphatidylserine. Proc Natl Acad Sci USA 93:1907–1912

    Article  CAS  Google Scholar 

  16. Slater SJ, Kelly MB, Taddeo FJ, Ho C, Rubin E, and Stubbs CD (1994) The modulation of protein kinase C activity by membrane lipid bilayer structure. J Biol Chem 269: 4866–4871

    CAS  Google Scholar 

  17. Ho C, Slater SJ, Stagliano B, Stubbs CD (2001) The cl domain of protein kinase c as a lipid bilayer surface sensing module. Biochemistry 40:10334–10341

    Article  CAS  Google Scholar 

  18. Kent C (1997) CTP:phosphocholine cytidylyltransferase. Biochim Biophys Acta 1348: 79–90

    Article  CAS  Google Scholar 

  19. Cornell RB. Northwood IC (2000) Regulation of CTP:phosphocholine cytidylyltransferase by amphitropism and relocalization. Trends Biochem Sci 25:441–447

    Article  Google Scholar 

  20. Friesen JA, Campbell HA, Kent C (1999) Enzymatic and cellular characterization of a catalytic fragment of CTP:phosphocholine cytidylyltransferase alpha. J Biol Chem 274:13384–13389

    Article  CAS  Google Scholar 

  21. Yang W, Boggs KP, Jackowski S (1995) The association of lipid activators with the amphipathic helical domain of CTP:phosphocholine cytidylyltransferase accelerates catalysis by increasing the affinity of the enzyme for CTP. J Biol Chem 270:23951–23957

    Article  CAS  Google Scholar 

  22. Dunne SJ, Cornell RB, Johnson JE, Glover NR, and Tracey AS (1996) Structure of the membrane binding domain of CTP:phosphocholine cytidylyltransferase. Biochemistry 35:11975–11984

    Article  CAS  Google Scholar 

  23. Arnold RS, Cornell RB (1996) Lipid regulation of CTP: phosphocholine cytidylyl- electrostatic, hydrophobic, and synergistic interactions of anionic phospho-transferase: lipids and diacylglycerol. Biochemistry 35:9917–9924

    Article  CAS  Google Scholar 

  24. Jamil H, Hatch GM, Vance DE (1993) Evidence that binding of CTP:phosphocholine cytidylyltransferase to membranes in rat hepatocytes is modulated by the ratio of bil. Biochem J 291 (Pt 2):419-427

    Google Scholar 

  25. Cantor RS (1999a) The influence of membrane lateral pressures on simple geometric models of protein conformational equilibria. Chem Phys Lipids 101:45–56

    Article  CAS  Google Scholar 

  26. Cantor RS (1999b) Lipid composition and the lateral pressure profile in bilayers. Biophys J 76:2625–2639

    Article  CAS  Google Scholar 

  27. Cantor RS (1997) The lateral pressure profile in membranes: a physical mechanism of general anesthesia. Biochemistry 36:2339–2344

    Article  CAS  Google Scholar 

  28. Anderson DM, Gruner SM, Leibler S (1988) Geometrical aspects of the frustration in the cubic phases of lyotropic liquid crystals. Proc Natl Acad Sci USA 85:5364–5368

    Article  CAS  Google Scholar 

  29. Giorgione JR, Huang Z, Epand RM (1998a) Increased activation of protein kinase C with cubic phase lipid compared with liposomes. Biochemistry 37:2384–2392

    Article  CAS  Google Scholar 

  30. Keller SL, Gruner SM, Gawrisch K (1996) Small concentrations of alamethicin induce a cubic phase in bulk phosphatidylethanolamine mixtures. Biochim Biophys Acta 1278:241–246

    Article  Google Scholar 

  31. Epand RM, Fuller N, Rand RP (1996a) Role of the position of unsaturation on the phase behavior and intrinsic curvature of phosphatidylethanolamines. Biophys J 71: 1806–1810

    Article  CAS  Google Scholar 

  32. Giorgione JR, Kraayenhof R, and Epand RM (1998b) Interfacial membrane properties modulate protein kinase C activation: role of the position of acyl chain unsaturation. Biochemistry 37:10956–10960

    Article  CAS  Google Scholar 

  33. Mosior M, Epand RM (1999) Role of the membrane in the modulation of the activity of protein kinase C. J Liposome Res. 9:21–42

    Article  CAS  Google Scholar 

  34. Epand RF, Kraayenhof R, Sterk GJ, Wong Fong Sang HW, Epand RM (1996b) Fluorescent probes of membrane surface properties. Biochim Biophys Acta 1284:191–195

    Article  Google Scholar 

  35. Sterk GJ, Thijsse PA, Epand RF, Wong Fong Sang HW, Kraayenhof R, Epand RM (1997) New fluorescent probes for polarity estimations at different distances from the membrane interface. J Fluorescence 7:115S–118S

    CAS  Google Scholar 

  36. Hannun YA, Loomis CR, Bell RM (1985) Activation of protein kinase C by Triton X-100 mixed micelles containing diacylglycerol and phosphatidylserine. J Biol Chem 260:10039–10043

    CAS  Google Scholar 

  37. Cornell RB (1991) Regulation of CTP:phosphocholine cytidylyltransferase by lipids. 1. Negative surface charge dependence for activation. Biochemistry 30:5873–5880

    Article  CAS  Google Scholar 

  38. Johnson JE, Cornell RB (1999) Mol Membr Biol 16:217–235

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Epand, R.M., Cornell, R., Davies, S.M.A., Kraayenhof, R. (2002). Mechanisms of the Modulation of Membrane Interfacial Enzyme Catalysis by Non-lamellar Forming Lipids: Comparison with the Behavior of a Fluorescent Probe in Membranes. In: Kraayenhof, R., Visser, A.J.W.G., Gerritsen, H.C. (eds) Fluorescence Spectroscopy, Imaging and Probes. Springer Series on Fluorescence, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56067-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56067-5_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62732-3

  • Online ISBN: 978-3-642-56067-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation