1 Fungi from PCR to Genomics: The Spreading Revolution in Evolutionary Biology

  • Chapter
  • First Online:
Systematics and Evolution

Part of the book series: The Mycota ((MYCOTA,volume 7A))

Abstract

We are in the golden age of fungal evolutionary biology. In this introductory chapter, we celebrate the progress in unraveling fungal relationships that paralleled the spread of the polymerase chain reaction and successive breakthroughs in DNA sequencing. Fungal molecular ecology, population genetics, and studies of adaptive evolution are exploding as improved sequencing technology brings individual genomes into focus. By broad consensus, fungi can now be classified by their evolutionary relationships. Kingdom Fungi, along with animals, are opisthokonts that originated from a unicellular ancestor with a single posterior flagellum at some stage in its life cycle. Fungi can be phylogenetically defined as the sister group to a clade including two amoeboid genera, Nuclearia and Fonticula. Neither of these genera has a cell wall during its feeding stage, and the earliest fungi were likely similarly phagotrophic and wall-less while feeding. Biochemical traits, including chitinous walls, ergosterol as the main membrane sterol, and lysine biosynthesis by the alpha-aminoadipate pathway, help define fungi, but whole-genome analyses show that the traits’ evolutionary origins predate fungi. Highlighting the difficulties of a morphological definition of fungi, phylogenetic analysis shows that funguslike organisms arose convergently in unrelated clades to become important parasites and saprotrophs. We speculate that their tractable genomes will continue to make the fungal groups outlined in this book prime subjects for research linking genotypes, phenotypes, and ecological interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amend AS, Seifert KA, Samson R, Bruns TD (2010) Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics. Proc Natl Acad Sci U S A 107:13748–13753. doi:10.1073/pnas.1000454107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson JB, Funt J, Thompson DA, Prabhu S, Socha A, Sirjusingh C, Dettman JR, Parreiras L, Guttman DS, Regev A, Kohn LM (2010) Determinants of divergent adaptation and Dobzhansky-Muller interaction in experimental yeast populations. Curr Biol 20:1383–1388. doi:10.1016/j.cub.2010.06.022

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549

    PubMed  Google Scholar 

  • Aronson BD, Johnson KA, Loros JJ, Dunlap JC (1994) Negative feedback defining a circadian clock – autoregulation of the clock gene frequency. Science 263:1578–1584

    CAS  PubMed  Google Scholar 

  • Barksdale AW (1966) Segregation of sex in progeny of a selfed heterozygote of Achlya bisexualis. Mycologia 58:802–804

    Google Scholar 

  • Bartnicki-Garcia S (1968) Cell wall composition and other biochemical markers in fungal phylogeny. In: Harborn JB (ed) Phytochemical phylogeny. Academic, New York, NY, pp 83–101

    Google Scholar 

  • Beakes GW, Honda D, Thines M (2014) Systematics of the straminipila: labyrinthulomycota, hyphochytriomycota and oomycota. In: McLaughlin DJ, Spatafora JW (eds) Systematics and evolution: Part A. Springer, Heidelberg

    Google Scholar 

  • Benny GL, O’Donnell K (2000) Amoebidium parasiticum is a protozoan, not a Trichomycete. Mycologia 92:1133–1137

    Google Scholar 

  • Benny GL, Humber RA, Voigt K (2014) Zygomycetous fungi: phylum entomophthoromycota and subphyla kickxellomycotina, mortierellomycotina, mucoromycotina, and zoopagomycotina. In: McLaughlin DJ, Spatafora JW (eds) Systematics and evolution: Part A. Springer, Heidelberg

    Google Scholar 

  • Berbee ML, Taylor JW (1992) Two ascomycete classes based on fruiting-body characters and ribosomal DNA sequence. Mol Biol Evol 9:278–284

    CAS  PubMed  Google Scholar 

  • Berbee ML, Taylor JW (1993) Dating the evolutionary radiations of the true fungi. Can J Bot/Rev Can Bot 71:1114–1127

    Google Scholar 

  • Berbee ML, Taylor JW (2001) Fungal molecular evolution: gene trees and geologic time. In: McLaughlin D, McLaughlin E, Lemke P (eds) The Mycota, Part B, vol VII. Springer, Berlin, pp 229–245

    Google Scholar 

  • Berbee ML, Taylor JW (2010) Dating the molecular clock in fungi – how close are we? Fungal Biol Rev 24:1–16

    Google Scholar 

  • Bidartondo MI, Bruns TD, Blackwell M, Edwards I, Taylor AFS, Horton T, Zhang N, Koljalg U, May G, Kuyper TW, Bever JD, Gilbert G, Taylor JW, DeSantis TZ, Pringle A, Borneman J, Thorn G, Berbee M, Mueller GM, Andersen GL, Vellinga EC, Branco S, Anderson I, Dickie IA, Avis P, Timonen S, Kjoller R, Lodge DJ, Bateman RM, Purvis A, Crous PW, Hawkes C, Barraclough T, Burt A, Nilsson RH, Larsson KH, Alexander I, Moncalvo JM, Berube J, Spatafora J, Lumbsch HT, Blair JE, Suh SO, Pfister DH, Binder M, Boehm EW, Kohn L, Mata JL, Dyer P, Sung GH, Dentinger B, Simmons EG, Baird RE, Volk TJ, Perry BA, Kerrigan RW, Campbell J, Rajesh J, Reynolds DR, Geiser D, Humber RA, Hausmann N, Szaro T, Stajich J, Gathman A, Peay KG, Henkel T, Robinson CH, Pukkila PJ, Nguyen NH, Villalta C, Kennedy P, Bergemann S, Aime MC, Kauff F, Porras-Alfaro A, Gueidan C, Beck A, Andersen B, Marek S, Crouch JA, Kerrigan J, Ristaino JB, Hodge KT, Kuldau G, Samuels GJ, Raja HA, Voglmayr H, Gardes M, Janos DP, Rogers JD, Cannon P, Woolfolk SW, Kistler HC, Castellano MA, Maldonado-Ramirez SL, Kirk PM, Farrar JJ, Osmundson T, Currah RS, Vujanovic V, Chen WD, Korf RP, Atallah ZK, Harrison KJ, Guarro J, Bates ST, Bonello P, Bridge P, Schell W, Rossi W, Stenlid J, Frisvad JC, Miller RM, Baker SE, Hallen HE, Janso JE, Wilson AW, Conway KE, Egerton-Warburton L, Wang Z, Eastburn D, Ho WWH, Kroken S, Stadler M, Turgeon G, Lichtwardt RW, Stewart EL, Wedin M, Li DW, Uchida JY, Jumpponen A, Deckert RJ, Beker HJ, Rogers SO, Xu JAP, Johnston P, Shoemaker RA, Liu MA, Marques G, Summerell B, Sokolski S, Thrane U, Widden P, Bruhn JN, Bianchinotti V, Tuthill D, Baroni TJ, Barron G, Hosaka K, Jewell K, Piepenbring M, Sullivan R, Griffith GW, Bradley SG, Aoki T, Yoder WT, Ju YM, Berch SM, Trappe M, Duan WJ, Bonito G, Taber RA, Coelho G, Bills G, Ganley A, Agerer R, Nagy L, Roy BA, Laessoe T, Hallenberg N, Tichy HV, Stalpers J, Langer E, Scholler M, Krueger D, Pacioni G, Poder R, Pennanen T, Capelari M, Nakasone K, Tewari JP, Miller AN, Decock C, Huhndorf S, Wach M, Vishniac HS, Yohalem DS, Smith ME, Glenn AE, Spiering M, Lindner DL, Schoch C, Redhead SA, Ivors K, Jeffers SN, Geml J, Okafor F, Spiegel FW, Dewsbury D, Carroll J, Porter TM, Pashley C, Carpenter SE, Abad G, Voigt K, Arenz B, Methven AS, Schechter S, Vance P, Mahoney D, Kang SC, Rheeder JP, Mehl J, Greif M, Ngala GN, Ammirati J, Kawasaki M, Gwo-Fang YA, Matsumoto T, Smith D, Koenig G, Luoma D, May T, Leonardi M, Sigler L, Taylor DL, Gibson C, Sharpton T, Hawksworth DL, Dianese JC, Trudell SA, Paulus B, Padamsee M, Callac P, Lima N, White M, Barreau C, Juncai MA, Buyck B, Rabeler RK, Liles MR, Estes D, Carter R, Herr JM, Chandler G, Kerekes J, Cruse-Sanders J, Marquez RG, Horak E, Fitzsimons M, Doring H, Yao S, Hynson N, Ryberg M, Arnold AE, Hughes K (2008) Preserving accuracy in GenBank. Science 319:1616

    CAS  PubMed  Google Scholar 

  • Brown MW, Spiegel FW, Silberman JD (2009) Phylogeny of the “forgotten” cellular slime mold, Fonticula alba, reveals a key evolutionary branch within Opisthokonta. Mol Biol Evol 26:2699–2709. doi:10.1093/molbev/msp185

    CAS  PubMed  Google Scholar 

  • Brown MW, Silberman JD, Spiegel FW (2010) A morphologically simple species of Acrasis (Heterolobosea, Excavata), Acrasis helenhemmesae n. sp. J Eukaryot Microbiol 57:346–353. doi:10.1111/j.1550-7408.2010.00481.x

    CAS  PubMed  Google Scholar 

  • Bruns TD, Fogel R, White TJ, Palmer JD (1989) Accelerated evolution of a false-truffle from a mushroom ancestor. Nature 339:140–142

    CAS  PubMed  Google Scholar 

  • Bruns TD, Vilgalys R, Barns SM, Gonzalez D, Hibbett DS, Lane DJ, Simon L, Stickel S, Szaro TM, Weisburg WG, Sogin ML (1992) Evolutionary relationships within the Fungi: analyses of nuclear small subunit rRNA sequences. Mol Phylogen Evol 1:231–241

    CAS  Google Scholar 

  • Bulman S, Braselton JP (2014) Rhizaria: phytomyxea. In: McLaughlin DJ, Spatafora JW (eds) Systematics and evolution: Part A. Springer, Heidelberg

    Google Scholar 

  • Burt A, Carter DA, Koenig GL, White TJ, Taylor JW (1996) Molecular markers reveal cryptic sex in the human pathogen Coccidioides immitis. Proc Natl Acad Sci U S A 93:770–773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cafaro MJ (2005) Eccrinales (Trichomycetes) are not fungi, but a clade of protists at the early divergence of animals and fungi. Mol Phylogenet Evol 35:21–34. doi:10.1016/j.ympev.2004.12.019

    CAS  PubMed  Google Scholar 

  • Cai L, Giraud T, Zhang N, Begerow D, Cai GH, Shivas RG (2011) The evolution of species concepts and species recognition criteria in plant pathogenic fungi. Fungal Diver 50:121–133. doi:10.1007/s13225-011-0127-8

    Google Scholar 

  • Casadevall A (2005) Fungal virulence, vertebrate endothermy, and dinosaur extinction: is there a connection? Fungal Genet Biol 42:98–106. doi:10.1016/j.fgb.2004.11.008

    PubMed  Google Scholar 

  • Cavalier-Smith T (2002) The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol 52:297–354

    CAS  PubMed  Google Scholar 

  • Cavalier-Smith T, Chao EEY (2003) Phylogeny and classification of phylum Cercozoa (Protozoa). Protist 154:341–358

    PubMed  Google Scholar 

  • Centers for Disease Control and Prevention (2012) http://www.cdc.gov/parasites/naegleria/. Cited 13 Apr 2012

  • DeBary A (1863) Recherches sur le dĂ©veloppement de quelques champignons parasites. Annales des Science Naturelles SĂ©r 4 Botanique 20:5–148, Pl. 1–13

    Google Scholar 

  • Dettman JR, Jacobson DJ, Taylor JW (2003a) A multilocus genealogical approach to phylogenetic species recognition in the model eukaryote Neurospora. Evolution 57:2703–2720

    PubMed  Google Scholar 

  • Dettman JR, Jacobson DJ, Turner E, Pringle A, Taylor JW (2003b) Reproductive isolation and phylogenetic divergence in Neurospora: comparing methods of species recognition in a model eukaryote. Evolution 57:2721–2741

    PubMed  Google Scholar 

  • Dettman JR, Sirjusingh C, Kohn LM, Anderson JB (2007) Incipient speciation by divergent adaptation and antagonistic epistasis in yeast. Nature 447:585–588. doi:10.1038/nature05856

    CAS  PubMed  Google Scholar 

  • Didier ES, Becnel JJ, Kent ML, Sanders JL, Weiss LM (2014) Microsporidia. In: McLaughlin DJ, Spatafora JW (eds) Systematics and evolution: Part A. Springer, Heidelberg

    Google Scholar 

  • Druzhinina IS, Kopchinskiy AG, Komon M, Bissett J, Szakacs G, Kubicek CP (2005) An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet Biol 42:813–828. doi:10.1016/j.fgb.2005.06.007

    CAS  PubMed  Google Scholar 

  • Dunlap JC, Borkovich KA, Henn MR, Turner GE, Sachs MS, Glass NL, McCluskey K, Plamann M, Galagan JE, Birren BW, Weiss RL, Townsend JP, Loros JJ, Nelson MA, Lambreghts R, Colot HV, Park G, Collopy P, Ringelberg C, Crew C, Litvinkova L, DeCaprio D, Hood HM, Curilla S, Shi M, Crawford M, Koerhsen M, Montgomery P, Larson L, Pearson M, Kasuga T, Tian CG, Bastuerkmen M, Altamirano L, Xu JH (2007) Enabling a community to dissect an organism: overview of the Neurospora functional genomics project. Adv Genet 57:49–96. doi:10.1016/s0065-2660(06)57002-6

    CAS  PubMed  PubMed Central  Google Scholar 

  • Durkin CA, Mock T, Armbrust EV (2009) Chitin in diatoms and its association with the cell wall. Eukaryot Cell 8:1038–1050. doi:10.1128/ec.00079-09

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eastwood DC, Floudas D, Binder M, Majcherczyk A, Schneider P, Aerts A, Asiegbu FO, Baker SE, Barry K, Bendiksby M, Blumentritt M, Coutinho PM, Cullen D, de Vries RP, Gathman A, Goodell B, Henrissat B, Ihrmark K, Kauserud H, Kohler A, LaButti K, Lapidus A, Lavin JL, Lee YH, Lindquist E, Lilly W, Lucas S, Morin E, Murat C, Oguiza JA, Park J, Pisabarro AG, Riley R, Rosling A, Salamov A, Schmidt O, Schmutz J, Skrede I, Stenlid J, Wiebenga A, **e XF, Kues U, Hibbett DS, Hoffmeister D, Hogberg N, Martin F, Grigoriev IV, Watkinson SC (2011) The plant cell wall-decomposing machinery underlies the functional diversity of forest fungi. Science 333:762–765. doi:10.1126/science.1205411

    CAS  PubMed  Google Scholar 

  • Ellison CE, Hall C, Kowbel D, Welch J, Brem RB, Glass NL, Taylor JW (2011) Population genomics and local adaptation in wild isolates of a model microbial eukaryote. Proc Natl Acad Sci U S A 108:2831–2836

    CAS  PubMed  PubMed Central  Google Scholar 

  • Emoto Y (1977) The myxomycetes of Japan. Sangyo Tosho, Tokyo

    Google Scholar 

  • Fisher MC, Koenig GL, White TJ, San-Blas G, Negroni R, Alvarez IG, Wanke B, Taylor JW (2001) Biogeographic range expansion into South America by Coccidioides immitis mirrors New World patterns of human migration. Proc Natl Acad Sci U S A 98:4558–4562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzpatrick DA, Logue ME, Stajich JE, Butler G (2006) A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evol Biol 6:99. doi:10.1186/1471-2148-6-99

    PubMed  PubMed Central  Google Scholar 

  • Francois I, Aerts AM, Cammue BPA, Thevissen K (2005) Currently used antimycotics: spectrum, mode of action and resistance occurrence. Curr Drug Targets 6:895–907. doi:10.2174/138945005774912744

    CAS  PubMed  Google Scholar 

  • Fungal Genomes (2012) http://fungalgenomes.org/. Cited 28 Mar 2012

  • Geissler S, Siegers K, Schiebel E (1998) A novel protein complex promoting formation of functional a- and g-tubulin. EMBO J 17:952–966

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gill EE, Lee RCH, Corradi N, Grisdale CJ, Limpright VO, Keeling PJ, Fast NM (2010) Splicing and transcription differ between spore and intracellular life stages in the parasitic Microsporidia. Mol Biol Evol 27:1579–1584. doi:10.1093/molbev/msq050

    CAS  PubMed  Google Scholar 

  • Giraud T, Refregier G, Le Gac M, de Vienne DM, Hood ME (2008) Speciation in fungi. Fungal Genet Biol 45:791–802. doi:10.1016/j.fgb.2008.02.001

    CAS  PubMed  Google Scholar 

  • Gleason FH, Lilje O (2009) Structure and function of fungal zoospores: ecological implications. Fungal Ecol 2:53–59. doi:10.1016/j.funeco.2008.12.002

    Google Scholar 

  • Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274:546–567. doi:10.1126/science.274.5287.546

    CAS  PubMed  Google Scholar 

  • GOLD (2012) http://www.genomesonline.org/cgi-bin/GOLD/phylogenetic_distribution.cgi. Cited 28 Mar 2012

  • Greengenes (2012) http://greengenes.lbl.gov/. Cited March 28 2012

  • Gull K, Trinci APJ (1974) Nuclear division in Basidiobolus ranarum. Trans Br Mycol Soc 3:457–460

    Google Scholar 

  • Gunderson JH, Elwood H, Ingold A, Kindle K, Sogin ML (1987) Phylogenetic relationships between chlorophytes, chrysophytes, and oomycetes. Proc Natl Acad Sci U S A 84:5823–5827

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harris SD (2011) Hyphal morphogenesis: an evolutionary perspective. Fungal Biol 115:475–484. doi:10.1016/j.funbio.2011.02.002

    PubMed  Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432

    Google Scholar 

  • Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129–1133

    CAS  PubMed  Google Scholar 

  • Heitman J, Kronstad JW, Taylor JW, Casselton LA (eds) (2007) Sex in fungi: molecular determination and evolutionary implications. ASM Press, Washington, DC

    Google Scholar 

  • Hibbett DS, Matheny PB (2009) The relative ages of ectomycorrhizal mushrooms and their plant hosts estimated using Bayesian relaxed molecular clock analyses. BMC Biol 7:13. doi:10.1186/1741-7007-7-13

    PubMed  PubMed Central  Google Scholar 

  • Hibbett DS, Gilbert LB, Donoghue MJ (2000) Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes. Nature 407:506–508

    CAS  PubMed  Google Scholar 

  • Hibbett DS, Ohman A, Glotzer D, Nuhn M, Kirk P, Nilsson RH (2011) Progress in molecular and morphological taxon discovery in Fungi and options for formal classification of environmental sequences. Fungal Biol Rev 25:38–47

    Google Scholar 

  • Horton TR, Bruns TD (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Mol Ecol 10:1855–1871

    CAS  PubMed  Google Scholar 

  • Hunger K, Beckering CL, Wiegeshoff F, Graumann PL, Marahiel MA (2006) Cold-induced putative DEAD box RNA helicases CshA and CshB are essential for cold adaptation and interact with cold shock protein B in Bacillus subtilis. J Bacteriol 188:240–248. doi:10.1128/jb.188.1.240-248.2006

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inderbitzin P, Harkness J, Turgeon BG, Berbee ML (2005) Lateral transfer of mating system in Stemphylium. Proc Natl Acad Sci U S A 102:11390–11395

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inderbitzin P, Davis RM, Bostock RM, Subbarao KV (2011) The ascomycete Verticillium longisporum is a hybrid and a plant pathogen with an expanded host range. PLoS One 6:e18260. doi:10.1371/journal.pone.0018260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Irvin SD, Bhattacharjee JK (1998) A unique fungal lysine biosynthesis enzyme shares a common ancestor with tricarboxylic acid cycle and leucine biosynthetic enzymes found in diverse organisms. J Mol Evol 46:401–408

    CAS  PubMed  Google Scholar 

  • James TY, Berbee ML (2012) No jacket required – new fungal lineage defies dress code. Bioessays 34:94–102. doi:10.1002/bies.201100110

    CAS  PubMed  Google Scholar 

  • James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung G, Johnson D, O’Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schuessler A, Longcore JE, O’Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Humber RA, Morton JB, Sugiyama J, Rossman AY, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lucking R, Buedel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R (2006) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443:818–822. doi:10.1038/nature05110

    CAS  PubMed  Google Scholar 

  • James TY, Porter TM, Martin WW (2014) Blastocladiomycota. In: McLaughlin DJ, Spatafora JW (eds) Systematics and evolution: Part A. Springer, Heidelberg

    Google Scholar 

  • Jones MDM, Forn I, Gadelha C, Egan MJ, Bass D, Massana R, Richards TA (2011) Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474:200–203

    CAS  PubMed  Google Scholar 

  • Juhas M, van der Meer JR, Gaillard M, Harding RM, Hood DW, Crook DW (2009) Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev 33:376–393. doi:10.1111/j.1574-6976.2008.00136.x

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jumpponen A, Jones KL (2009) Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate Quercus macrocarpa phyllosphere. New Phytol 184:438–448. doi:10.1111/j.1469-8137.2009.02990.x

    CAS  PubMed  Google Scholar 

  • Kaneshiro ES (2002) Sterol biosynthesis in Pneumocystis: unique steps that define unique targets. Drug Resist Updat 5:259–298

    CAS  PubMed  Google Scholar 

  • Keeling PJ, Fast NM, Law JS, Williams BAP, Slamovits CH (2005) Comparative genomics of microsporidia. Folia Parasitol 52:8–14

    PubMed  Google Scholar 

  • Koestler T, Ebersberger I (2011) Zygomycetes, Microsporidia, and the evolutionary ancestry of sex determination. Genome Biol Evol 3:186–194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koljalg U, Larsson KH, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, Erland S, Hoiland K, Kjoller R, Larsson E, Pennanen T, Sen R, Taylor AFS, Tedersoo L, Vralstad T, Ursing BM (2005) UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol 166:1063–1068. doi:10.1111/j.1469-8137.2005.01376.x

    CAS  PubMed  Google Scholar 

  • Koufopanou V, Burt A, Taylor JW (1997) Concordance of gene genealogies reveals reproductive isolation in the pathogenic fungus Coccidioides immitis. Proc Natl Acad Sci U S A 94:5478–5482

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lacroix B, Tzfira T, Vainstein A, Citovsky V (2006) A case of promiscuity: Agrobacterium’s endless hunt for new partners. Trends Genet 22:29–37. doi:10.1016/j.tig.2005.10.004

    CAS  PubMed  Google Scholar 

  • Lang BF, O’Kelly C, Nerad T, Gray MW, Burger G (2002) The closest unicellular relatives of animals. Curr Biol 12:1773–1778

    CAS  PubMed  Google Scholar 

  • Lara E, Moreira D, Lopez-Garcia P (2010) The environmental clade LKM11 and Rozella form the deepest branching clade of Fungi. Protist 161:116–121. doi:10.1016/j.protis.2009.06.005

    CAS  PubMed  Google Scholar 

  • Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, Davey RP, Roberts IN, Burt A, Koufopanou V, Tsai IJ, Bergman CM, Bensasson D, O’Kelly MJT, van Oudenaarden A, Barton DBH, Bailes E, Ba ANN, Jones M, Quail MA, Goodhead I, Sims S, Smith F, Blomberg A, Durbin R, Louis EJ (2009) Population genomics of domestic and wild yeasts. Nature 458:337–341. doi:10.1038/nature07743

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Steenkamp ET, Brinkmann H, Forget L, Philippe H, Lang BF (2009) Phylogenomic analyses predict sistergroup relationship of nucleariids and Fungi and paraphyly of zygomycetes with significant support. BMC Evol Biol 9:272. doi:10.1186/1471-2148-9-272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lutzoni F, Pagel M (1997) Accelerated evolution as a consequence of transitions to mutualism. Proc Natl Acad Sci U S A 94:11422–11427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall WL, Berbee ML (2011) Facing unknowns: living cultures (Pirum gemmata gen. nov., sp nov., and Abeoforma whisleri, gen. nov., sp nov.) from invertebrate digestive tracts represent an undescribed clade within the unicellular opisthokont lineage Ichthyosporea (Mesomycetozoea). Protist 162:33–57. doi:10.1016/j.protis.2010.06.002

    PubMed  Google Scholar 

  • Mehrabi R, Bahkali AH, Abd-Elsalam KA, Moslem M, Ben M’Barek S, Gohari AM, Jashni MK, Stergiopoulos I, Kema GHJ, de Wit P (2011) Horizontal gene and chromosome transfer in plant pathogenic fungi affecting host range. FEMS Microbiol Rev 35:542–554. doi:10.1111/j.1574-6976.2010.00263.x

    CAS  PubMed  Google Scholar 

  • Mendoza L, Taylor JW, Ajello L (2002) The class Mesomycetozoea: a group of microorganisms at the animal-fungal boundary. Annu Rev Microbiol 56:160950. doi:10.1146/annurev.micro.56.012302.160950

    Google Scholar 

  • Menkis A, Jacobson DJ, Gustafsson T, Johannesson H (2008) The mating-type chromosome in the filamentous ascomycete Neurospora tetrasperma represents a model for early evolution of sex chromosomes. PLoS Genet 4:1000030. doi:10.1371/journal.pgen.1000030

    Google Scholar 

  • Munro CA, Gow NAR (2001) Chitin synthesis in human pathogenic fungi. Med Mycol 39:41–53. doi:10.1080/744118878

    CAS  PubMed  Google Scholar 

  • Nachman MW, Hoekstra HE, D’Agostino SL (2003) The genetic basis of adaptive melanism in pocket mice. Proc Natl Acad Sci U S A 100:5268–5273. doi:10.1073/pnas.0421157100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagaki T, Yamada H, Toth A (2000) Maze-solving by an amoeboid organism. Nature 407:470

    CAS  PubMed  Google Scholar 

  • Neafsey DE, Barker BM, Sharpton TJ, Stajich JE, Park DJ, Whiston E, Hung CY, McMahan C, White J, Sykes S, Heiman D, Young S, Zeng QD, Abouelleil A, Aftuck L, Bessette D, Brown A, FitzGerald M, Lui A, Macdonald JP, Priest M, Orbach MJ, Galgiani JN, Kirkland TN, Cole GT, Birren BW, Henn MR, Taylor JW, Rounsley SD (2010) Population genomic sequencing of Coccidioides fungi reveals recent hybridization and transposon control. Genome Res 20:938–946. doi:10.1101/gr.103911.109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson RH, Ryberg M, Kristiansson E, Abarenkov K, Larsson K-H, Kõljalg U (2006) Taxonomic reliability of DNA sequences in public sequence databases: a fungal perspective. PLoS One 1(1):e59

    PubMed  PubMed Central  Google Scholar 

  • Nishida H, Nishiyama M (2000) What is characteristic of fungal lysine synthesis through the alpha-aminoadipate pathway? J Mol Evol 51:299–302

    CAS  PubMed  Google Scholar 

  • Nishida H, Nishiyama M, Kobashi N, Kosuge T, Hoshino T, Yamane H (1999) A prokaryotic gene cluster involved in synthesis of lysine through the amino adipate pathway: a key to the evollution of amino acid biosynthesis. Genome Res 9:1175–1183

    CAS  PubMed  Google Scholar 

  • Park B, Park J, Cheong KC, Choi J, Jung K, Kim D, Lee YH, Ward TJ, O’Donnell K, Geiser DM, Kang S (2011) Cyber infrastructure for Fusarium: three integrated platforms supporting strain identification, phylogenetics, comparative genomics and knowledge sharing. Nucleic Acids Res 39:D640–D646. doi:10.1093/nar/gkq1166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parks LW, Smith SJ, Crowley SH (1995) Biochemical and physiological effects of sterol altertions in yeast–a review. Lipids 30:227–230

    CAS  PubMed  Google Scholar 

  • Powell MJ, Letcher PM (2014) Chytridiomycota , monoblepharidomycota and neocallimastigomycota. In: McLaughlin DJ, Spatafora JW (eds) Systematics and evolution: Part A. Springer, Heidelberg

    Google Scholar 

  • Ribosomal Database Project (2012) http://rdp.cme.msu.edu/. Cited 28 Mar 2012

  • Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR (2003) Cell migration: integrating signals from front to back. Science 302:1704–1709

    CAS  PubMed  Google Scholar 

  • Rokas A, Kruger D, Carroll SB (2005) Animal evolution and the molecular signature of radiations compressed in time. Science 310:1933–1938

    PubMed  Google Scholar 

  • Ruiz-Herrera J, Ortiz-Castellanos L (2010) Analysis of the phylogenetic relationships and evolution of the cell walls from yeasts and fungi. FEMS Yeast Res 10:225–243. doi:10.1111/j.1567-1364.2009.00589.x

    CAS  PubMed  Google Scholar 

  • Ryberg M, Kristiansson E, Sjökvist E, Nilsson RH (2009) An outlook on the fungal internal transcribed spacer sequences in GenBank and the introduction of a web-based tool for the exploration of fungal diversity. New Phytol 181:471–477. doi:10.1111/j.1469-8137.2008.02667.x

    CAS  PubMed  Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich H (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    CAS  PubMed  Google Scholar 

  • Schadt CW, Martin AP, Lipson DA, Schmidt SK (2003) Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301:1359–1361

    CAS  PubMed  Google Scholar 

  • Schaller H (2004) New aspects of sterol biosynthesis in growth and development of higher plants. Plant Physiol Biochem 42:465–476

    CAS  PubMed  Google Scholar 

  • Schloss PD (2009) A high-throughput DNA sequence aligner for microbial ecology studies. PLoS One 4(12):e8230

    PubMed  PubMed Central  Google Scholar 

  • Schoch C, Seifert K (2010) The home stretch for fungal barcoding. IMA Fungus 1:2–3

    Google Scholar 

  • Schoch CL, Sung GH, Lopez-Giraldez F, Townsend JP, Miadlikowska J, Hofstetter V, Robbertse B, Matheny PB, Kauff F, Wang Z, Gueidan C, Andrie RM, Trippe K, Ciufetti LM, Wynns A, Fraker E, Hodkinson BP, Bonito G, Groenewald JZ, Arzanlou M, de Hoog GS, Crous PW, Hewitt D, Pfister DH, Peterson K, Gryzenhout M, Wingfield MJ, Aptroot A, Suh SO, Blackwell M, Hillis DM, Griffith GW, Castlebury LA, Rossman AY, Lumbsch HT, Lucking R, Budel B, Rauhut A, Diederich P, Ertz D, Geiser DM, Hosaka K, Inderbitzin P, Kohlmeyer J, Volkmann-Kohlmeyer B, Mostert L, O’Donnell K, Sipman H, Rogers JD, Shoemaker RA, Sugiyama J, Summerbell RC, Untereiner W, Johnston PR, Stenroos S, Zuccaro A, Dyer PS, Crittenden PD, Cole MS, Hansen K, Trappe JM, Yahr R, Lutzoni F, Spatafora JW (2009) The ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Syst Biol 58:224–239. doi:10.1093/sysbio/syp020

    CAS  PubMed  Google Scholar 

  • Sekimoto S, Rochon D, Long JE, Dee JM, Berbee ML (2011) A multigene phylogeny of Olpidium and its implications for early fungal evolution. BMC Evol Biol 11:331. doi:10.1186/1471-2148-11-331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silva (2012) http://www.arb-silva.de/. Cited 28 Mar 2012

  • Simon L, Bousquet J, Levesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67–69

    Google Scholar 

  • Steenkamp ET, Wright J, Baldauf SL (2006) The protistan origins of animals and fungi. Mol Biol Evol 23:93–106

    CAS  PubMed  Google Scholar 

  • Stephenson SL (2014) Excavata: acrasiomycota; amoebozoa: dictyosteliomycota, myxomycota. In: McLaughlin DJ, Spatafora JW (eds) Systematics and evolution: Part A. Springer, Heidelberg

    Google Scholar 

  • Stiller JW, Huang JL, Ding Q, Tian J, Goodwillie C (2009) Are algal genes in nonphotosynthetic protists evidence of historical plastid endosymbioses? BMC Genomics 10:484. doi:10.1186/1471-2164-10-484

    PubMed  PubMed Central  Google Scholar 

  • Strassmann JE, Zhu Y, Queller DC (2000) Altruism and social cheating in the social amoeba Dictyostelium discoideum. Nature 408:965–967

    CAS  PubMed  Google Scholar 

  • Suh SO, McHugh JV, Blackwell M (2004) Expansion of the Candida tanzawaensis yeast clade: 16 novel Candida species from basidiocarp-feeding beetles. Int J Syst Evol Microbiol 54:2409–2429. doi:10.1099/ijs.0.63246-0

    CAS  PubMed  Google Scholar 

  • Sumathi JC, Raghukumar S, Kasbekar DP, Raghukumar C (2006) Molecular evidence of fungal signatures in the marine protist Corallochytrium limacisporum and its implications in the evolution of animals and fungi. Protist 157:363–376. doi:10.1016/j.protis.2006.05.003

    CAS  PubMed  Google Scholar 

  • Swann EC, Taylor JW (1993) Higher taxa of basidiomycetes: an 18S rRNA gene perspective. Mycologia 85:923–936

    CAS  Google Scholar 

  • Takamatsu A, Fujii T, Endo I (2000) Time delay effect in a living coupled oscillator system with the plasmodium of Physarum polycephalum. Phys Rev Lett 85:2026–2029

    CAS  PubMed  Google Scholar 

  • Taylor JW, Jacobson DJ, Fisher MC (1999) The evolution of asexual fungi: reproduction, speciation and classification. Annu Rev Phytopathol 37:197–246

    CAS  PubMed  Google Scholar 

  • Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:21–32. doi:10.1006/fgbi.2000.1228

    CAS  PubMed  Google Scholar 

  • Taylor TN, Klavins SD, Krings M, Taylor EL, Kerp H, Hass H (2004) Fungi from the Rhynie chert: a view from the dark side. Trans R Soc Edinb Earth Sci 94:457–473

    Google Scholar 

  • Taylor JW, Turner E, Townsend JP, Dettman JR, Jacobson D (2006) Eukaryotic microbes, species recognition and the geographic limits of species: examples from the kingdom Fungi. Philos Trans R Soc Lond B Biol Sci 361:1947–1963. doi:10.1098/rstb.2006.1923

    PubMed  PubMed Central  Google Scholar 

  • Torruella G, Suga H, Riutort M, Pereto J, Ruiz-Trillo I (2009) The evolutionary history of lysine biosynthesis pathways within eukaryotes. J Mol Evol 69:240–248. doi:10.1007/s00239-009-9266-x

    CAS  PubMed  Google Scholar 

  • Townsend JP (2007) Profiling phylogenetic informativeness. Syst Biol 56:222–231. doi:10.1080/10635150701311362

    CAS  PubMed  Google Scholar 

  • Tree of Life web project (2012) http://tolweb.org/tree/. Cited 13 Apr 2012

  • TrichOKEY 2 (2011) http://www.isth.info/tools/molkey/index.php. Cited Jun 2011

  • Tsui CKM, Marshall W, Yokoyama R, Honda D, Lippmeier JC, Craven KD, Peterson PD, Berbee ML (2009) Labyrinthulomycetes phylogeny and its implications for the evolutionary loss of chloroplasts and gain of ectoplasmic gliding. Mol Phylogenet Evol 50:129–140

    CAS  PubMed  Google Scholar 

  • Turner TL, Bourne EC, Von Wettberg EJ, Hu TT, Nuzhdin SV (2010) Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nat Genet 42:260–263. doi:10.1038/ng.515

    CAS  PubMed  Google Scholar 

  • Vogel HJ (1961) Lysine synthesis and phylogeny of lower fungi – some chytrids versus Hyphochytrium. Nature 189:1026–1027

    CAS  PubMed  Google Scholar 

  • Vogel HJ (1965) Lysine biosynthesis and evolution. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic, New York, NY, pp 25–40

    Google Scholar 

  • Vogler DR, Bruns TD (1998) Phylogenetic relationships among the pine stem rust fungi (Cronartium and Peridermium spp.). Mycologia 90:244–257

    Google Scholar 

  • Von Wettstein F (1921) Das Vorkommen von Chitin und seine Verwertung als systematisch - phylogenetisches Merkmal im Pflanzenreich. Sitzungsberichte Akademie der Wissenschaften in Wien Mathematisch-naturwissenschaftliche Klasse 130:3–20

    Google Scholar 

  • Vos M, Velicer GJ (2008) Isolation by distance in the spore-forming soil bacterium Myxococcus xanthus. Curr Biol 18:386–391. doi:10.1016/j.cub.2008.02.050

    CAS  PubMed  Google Scholar 

  • Wainright PO, Hinkle G, Sogin ML, Stickel SK (1993) Monophyletic origins of the Metazoa: an evolutionary link with fungi. Science 260:340–342

    CAS  PubMed  Google Scholar 

  • Weete JD, Abril M, Blackwell M (2010) Phylogenetic distribution of fungal sterols. PLoS One 5(5):e10899. doi:10.1371/journal.pone.0010899

    PubMed  PubMed Central  Google Scholar 

  • Whisler HC (1962) Culture and nutrition of Amoebidium parasiticum. Am J Bot 49:193–199

    Google Scholar 

  • Whitaker RJ, Grogan DW, Taylor JW (2003) Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 301:976–978. doi:10.1126/science.1086909

    CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols. A guide to methods and applications. Academic, San Diego, CA, pp 315–322

    Google Scholar 

  • Yeast Biochemical Pathway Database (2012) http://pathway.yeastgenome.org/. Cited 10 Apr 2012

  • Yoshida M, Nakayama T, Inouye I (2009) Nuclearia thermophila sp nov (Nucleariidae), a new nucleariid species isolated from Yunoko Lake in Nikko (Japan). Eur J Protistol 45:147–155. doi:10.1016/j.ejop.2008.09.004

    PubMed  Google Scholar 

  • Zabriskie TM, Jackson MD (2000) Lysine biosynthesis and metabolism in fungi. Nat Prod Rep 17:85–97

    CAS  PubMed  Google Scholar 

  • Zettler LAA, Nerad TA, O’Kelly CJ, Sogin ML (2001) The nucleariid amoebae: more protists at the animal-fungal boundary. J Eukaryot Microbiol 48:293–297

    PubMed  Google Scholar 

Download references

Acknowledgments

Financial support to J. Taylor was provided in part by National Institutes of Health NIH Grant R24 GM081597 and National Science Foundation (NSF) Grant DEB 05-16511 and to M. Berbee by NSF DEB-0732984, Assembling the Fungal Tree of Life, and from a Natural Sciences and Engineering Research Council of Canada Discovery grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Taylor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Taylor, J.W., Berbee, M.L. (2014). 1 Fungi from PCR to Genomics: The Spreading Revolution in Evolutionary Biology. In: McLaughlin, D., Spatafora, J. (eds) Systematics and Evolution. The Mycota, vol 7A. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55318-9_1

Download citation

Publish with us

Policies and ethics

Navigation