Nonlinear Interactions and Excitonic Effects in Semiconductor Quantum Wells

  • Conference paper
Nonlinear Optics: Materials and Devices

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 7))

  • 118 Accesses

Abstract

The optimization of the nonlinear optical response of solids is a key element in the development of future optical switching and signal processing systems. Demonstrations of device feasibility have been obtained in laboratories. However, the characteristics of the materials utilized so far do not meet all the stringent requirements imposed by implementation in real systems. It is most likely that new concepts have to be introduced in nonlinear optics and that new physical mechanisms have to be explored in order to manufacture the materials that will satisfy these requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. L. L. Chang and K. Ploog, eds.,“Molecular Beam Epitaxy and Heterostructures,”(Nijhoff, Dordrecht, The Netherlands, 1985 )

    Google Scholar 

  2. R. Dingle, ed.“Device and Circuit Applications of III-V Semiconductor Superlattice and Modulation Do**,”( Academic, New York, 1985 )

    Google Scholar 

  3. E. I. Rashba and M. D. Sturge, eds.,“Excitons,”Vol. 2 of Modern Problems in Condensed Matter Science, ( North-Holland, Amsterdam 1982 ).

    Google Scholar 

  4. R. Dingle, W. Wiegmann, and C. H. Henry,“Quantum states of confined carriers in very thin A1GaAs-GaAs heterostructures,”Phys. Rev. Lett. 33827 (1974).

    Article  ADS  Google Scholar 

  5. G. Bastard, Phys. Rev. B25, 7584 (1982).

    Article  ADS  Google Scholar 

  6. U. Ekenberg and M. Altarelli, Phys, Rev. B30, 3569 (1984).

    Article  ADS  Google Scholar 

  7. A. Fasolino and M. Altarelli, in“Heterostructures and Two-Dimensional Electron Systems in Semiconductors,”( Mauendorf, Austria, 1984 ).

    Google Scholar 

  8. R. J. Elliott, Phys. Rev. 106, 1384 (1957).

    Article  ADS  Google Scholar 

  9. M. Shinada and S. Sugano, J. Phys. Soc. Jpn. 21, 1936 (1966).

    Article  ADS  Google Scholar 

  10. C. Weisbuch, R. C. Miller, R. Dingle, and A. C. Gossard, Solid State Commun. 37, 219 (1981).

    Article  ADS  Google Scholar 

  11. R. C. Miller, D. A. Kleinman, W. A. Norland, and A. C. Gossard, Phys. Rev. B22, 863 (1980).

    ADS  Google Scholar 

  12. R. C. Miller, D. A. Kleinman, J. Lumin 30, S20 (1985).

    Article  Google Scholar 

  13. J. Hegarty and M. D. Sturge, J. Opt. Soc. Am. B2, 1143 (1985).

    Article  ADS  Google Scholar 

  14. C. Weisbuch, R. Dingle, A. C. Gossard, and W. Wiegmann, J. Vac. Sci. Technol 17, 1128 (1980).

    Article  ADS  Google Scholar 

  15. G. Bastard, E. E. Mendez, L. L. Chang, and L. Ezaki, Phys. Rev. B26, 1974 (1982).

    Article  ADS  Google Scholar 

  16. R. L. Greene and K. K. Bajaj, Solid State Commun. 45, 831 (1983).

    Article  ADS  Google Scholar 

  17. R. L. Greene, K. K. Bajaj, and D. E. Phelps, Phys. Rev. B29, 1807 (1984). 15. D. S. Chemla, D. A. B. Miller, J. Opt. Soc. Am. B2, 1155 (1985).

    Article  Google Scholar 

  18. J. E. Zucker, A. Pinczuk, D. S. Chemla, A. C. Gossard, and W. Wiegmann, Phys. Rev. Lett. 51, 1293 (1983).

    Article  ADS  Google Scholar 

  19. J. E. Zucker, A. Pinczuk, D. S. Chemla, A. C. Gossard, and W. Wiegmann, Phys. Rev. Lett. 53, 1280 (1984).

    Article  ADS  Google Scholar 

  20. J. E. Zucker, A. Pinczuk, D. S. Chemla, A. C. Gossard, and W. Wiegmann, Phys. Rev. B29, 7065 (1984).

    Article  ADS  Google Scholar 

  21. D. A. B. Miller, D. S. Chemla, P. W. Smith, A. C. Gossard, and W. T. Tsang, Appl. PHys. B28, 96 (1982).

    Google Scholar 

  22. J. S. Weiner, D. S. Chemla, D. A. B. Miller, T. H. Wood, D. Sivco and A. Y. Cho, Appl. Phys. Lett. 46, 619 - 621 (1985).

    Article  ADS  Google Scholar 

  23. H. Temkin, M. B. Panish, P. M. Petroff, R. A. Hamm, J. M. Vandenberg, S. Sumski, Appl. Phys. Lett. 47, 394 (1985).

    Article  ADS  Google Scholar 

  24. D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, and W. Wiegmann, IEEE J. Quantum Electron. QE-20 265 (1984).

    Google Scholar 

  25. H. Haug and S. Schmitt-Rink, Prog. Quantum Electron. 9, 3 (1984).

    Article  ADS  Google Scholar 

  26. D. A. B. Miller, D. S. Chemla. P. W. Smith, A. C. Gossard, and W. T. Tsang, Appl. Phys. Lett. 41, 679 (1982).

    Article  ADS  Google Scholar 

  27. D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W. Wiegmann, Appl. Phys. Lett. 42, 925 (1983).

    Article  ADS  Google Scholar 

  28. W. H. Knox, R. F. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, and C. V. Shank, in“Ultrafast Phenomena IV, D. H. Auston and K. B. Eisenthal, eds. ( Springer-Verlag, Berlin, 1984 ), p. 162.

    Google Scholar 

  29. W. H. Knox, R. F. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, and C. V. Shank, Phys. Rev. Lett. 54, 1306 (1985).

    Article  ADS  Google Scholar 

  30. J. S. Weiner, D. S. Chemla, D. A. B. Miller, H. Haus, A. C. Gossard, W. Wiegmann, and C. A. Burrus, Appl. Phys. Lett. 47, 664 (1985).

    Article  ADS  Google Scholar 

  31. S. Schmitt-Rink, D. S. Chemla, D. A. B. Miller, Phys. Rev. 32 (1985).

    Google Scholar 

  32. H. A. Haus, Y. Silberberg, J. Opt. Soc. Am. B2, 1237 (1985).

    Google Scholar 

  33. P. W. Smith, Y. Silberberg, D. A. B. Miller, J. Opt. Soc. Am. B2, 1228 (1985).

    Google Scholar 

  34. W. Franz, Z. Naturforsch 13a, 484 (1958).

    ADS  MATH  Google Scholar 

  35. b. L. V. Keldysh, Zh. Eksp. Teor. Fiz. 34, 1138 (1958) [Soy. Phys. - JETP 7 788 (1958)].

    Google Scholar 

  36. J. D. Dow and D. Redfield, Phys. Rev. B1, 3358 (1970).

    Article  ADS  Google Scholar 

  37. Q. H. F. Vrehen, J. Phys. Chem. Solids 29, 129 (1968).

    Article  ADS  Google Scholar 

  38. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, Phys. Rev. Lett. 53, 2173 (1984).

    Article  ADS  Google Scholar 

  39. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C A. Burrus, Phys. Rev. B32, 1043 (1985).

    Article  ADS  Google Scholar 

  40. F. L. Lederman and J. D. Dow, Phys, Rev. 13, 1633 (1976).

    ADS  Google Scholar 

  41. D. A. B. Miller, W. H. Knox, D. S. Chemla, T. C. Damen, P. M. Downey, J. E. Henry, Paper TUK2, Conference on Lasers and Electro-optics, Baltimore, MA (1985).

    Google Scholar 

  42. J. S. Weiner, D. A. B. Miller, D. S. Chemla, T. C. Damen, C. A. Burrus, T. H. Wood, A. C. Gossard, W. Wiegmann, To be published in Appl. Phys. Lett.

    Google Scholar 

  43. T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, and W. Wiegmann, Appl. Phys. Lett. 44, 16 (1984).

    Article  ADS  Google Scholar 

  44. T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, and W. Wiegmann, IEEE J. Quantum Electron. QE-21 117 (1985).

    Google Scholar 

  45. T. H. Wood, C. A. Burrus, R. S. Tucker, J. S. Weiner, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, Electronics Letters 21, G93 (1985).

    Article  Google Scholar 

  46. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, Appl. Phys. Lett. 45, 13 (1984).

    Article  ADS  Google Scholar 

  47. D. A. B. Miller, D. S. Chemla, T. C. Damen. T. H. Wood, C. A. Burrus, A. C. Gossard, and W. Wiegmann, Opt. Lett. 9, 567 (1984).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chemla, D.S. (1986). Nonlinear Interactions and Excitonic Effects in Semiconductor Quantum Wells. In: Flytzanis, C., Oudar, J.L. (eds) Nonlinear Optics: Materials and Devices. Springer Proceedings in Physics, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-47547-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-47547-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-47551-1

  • Online ISBN: 978-3-642-47547-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation