Systems with a Miscibility Gap in the Liquid State

  • Chapter
Fluid Sciences and Materials Science in Space

Abstract

Immiscible alloys have gained a renewed scientific and technological interest, which was stimulated by results of experiments conducted under microgravity conditions. A large number of experiments was performed with immiscibles yielding surprising results, especially on the kinetics of phase separation. This chapter gives an overview of metallic immiscible alloys; we specifically discuss the thermodynamics, the mechanisms leading to separation of the immiscible liquids and experiments performed under microgravity conditions. An attempt is then made to define tasks for future activities and possible applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. White J.L., A Thermodynamic analysis of solubility in liquid metal sytems; U.S. Naval research laboratory, Washington D.C. (1960)

    Google Scholar 

  2. Predel B., Beitrag zur Konstitution und Thermodynamik von Entmischungssystemen, Z. Metallkde., 56, (1965), 791

    Google Scholar 

  3. Hildebrand J.H. and Scott R.L., The solubility of non-electrolytes, Reinhold Publ. Corp, New York, 1950

    Google Scholar 

  4. Mott B.W., Liquid immiscibility in metal systems, Phil. Mag., 2 (1957), 259

    Article  Google Scholar 

  5. Mott B.W., Immiscibility in liquid metal systems, J. Mat. Sci., 3 (1968), 424

    Article  Google Scholar 

  6. Dasarathy C., Liquid immiscibility in binary indium alloys, Trans. Met. Soc. AIME, 245 (1969), 2015

    Google Scholar 

  7. Chakrabarti D.J. and Laughlin D.E., The Cu-Pb system, Bull, alloy phase diagr., 5 (1984), 503–510

    Article  Google Scholar 

  8. Hultgren R., Desai P.D., Hawkins D.T., Gleiser M and Kelley K.K., Selected values of thermodynamic properties of binary alloys, Amer. Soc. Met., Metals Park, Ohio 1973

    Google Scholar 

  9. Predel B., Nachweis und Abschätzung von Fehlpassungsenergien in flüssigen und festen Legierungen, Acta Met., 14 (1966), 209

    Article  Google Scholar 

  10. Predel B. and Arpshofen L, Zur Entmischung metallischer Schmelzen unter besonderer Berücksichtigung des Gravitationseinflusses, Metall, 34 (1980), 412

    Google Scholar 

  11. Lacman R., Thermodynamische Behandlung der Assoziations- und Solvationserschein-ungen in binären Nichtelektrolytgemischen, III. Teil: Die Einführung der nullten Näherung für die reguläre Losung, Z. Phys. Chem. Neue Folge, 35 (1962), 86

    Article  Google Scholar 

  12. Miedema A.R., On the heat of formation of solid alloys, J Less Comm. Met. 46 (1976), 67

    Article  Google Scholar 

  13. Flory P.J., Thermodynamics of high polymer solutions, J Chem. Phys., 10 (1942), 51

    Article  Google Scholar 

  14. Huggins M.L., Some properties of long-chain compounds, J. Phys. Chem. 46, (1942), 151–158

    Article  Google Scholar 

  15. Lück R., Gerling U. and Predel B., Die Konfigurationsentropie flüssiger Legierungen, Z. Metallkde. 77 (1986), 140

    Google Scholar 

  16. Guggenheim E.A., Mixtures, Oxford 1952

    Google Scholar 

  17. Münster A., Statistische Thermodynamik kondensierter Phasen, Handbuch d. Physik. Flügge, ed., Springer, Berlin 1962

    Google Scholar 

  18. Lück R. and Predel B., Thermodynamics of the decomposition of liquid alloys, Proc. Workshop on effects of gravity on solidification of immiscible alloys, Stockholm, ESA SP-219, Mar. 1984, 13–23

    Google Scholar 

  19. Kleppa O. J., Thermodynamic analysis of binary liquid alloys of Group II B Metals-II, The alloys of cadmium with gallium, indium, tin, thallium, lead and bismuth, Acta Met, 2 (1958), 233

    Google Scholar 

  20. Lück R. and Predel B., The enthalpy of mixing of liquid iron-tin alloys determined by means of a new high-temperature calorimeter, Z. Metallkde., 76 (1985), 684

    Google Scholar 

  21. Miller K C and Turkdogan E.T, Liquid miscibility gap in iron-tin system, Trans. Met. Soc. AIME, 230 (1964), 1202

    Google Scholar 

  22. Shiraishi S.Y. and Bell H.B., Miscibility gap in iron-tin alloys, Inst. Mining Met. Trans., 77 (1968), C104

    Google Scholar 

  23. Campbell A.N., Wood J.N. and Skinner G.B., The system iron-tin: Liquids only, J. Am. Chem. Soc, 71 (1949), 1729

    Article  Google Scholar 

  24. Yamamoto M., Mori S. and Kato E., Tetsu to hagane, 67 (1981), 1952

    Google Scholar 

  25. Nüssler H.D., von Goldbeck O. and Spencer P.J., A thermal dynamic assessment of the iron-tin-system, Calphad, 3 (1979), 19

    Article  Google Scholar 

  26. Kubaschewski O., Iron-binary phase diagrams, Springer, Berlin 1982

    Google Scholar 

  27. Sommer F., Association model for the description of the thermodynamic functions of liquid alloys. Z Metallkde., 73 (1982), 72

    Google Scholar 

  28. Sommer F., Association model for the description of the thermodynamic functions of liquid alloys. Z Metallkde., 73 (1982), 77

    Google Scholar 

  29. Predel B. and Sandig H., Thermodynamische Untersuchungen der Systeme Al-Bi, Al-In und Cu-Tl, Mat. Sic. Eng., 4 (1969), 49

    Google Scholar 

  30. Murray J.L., Bull, alloy phase diagrams, 4 (1983), 271

    Article  Google Scholar 

  31. Predel B., Die Zustandsbilder Gallium-Wismut und Gallium-Quecksilber, Vergleich der Koexistenzkurven mit den Theorien der Entmischung, Physikal. Chem. 24 (1960), 206

    Article  Google Scholar 

  32. Elliott R.P., Constitution of binary alloys, First supplement, Mc Graw Hill Book Comp. New York (1965)

    Google Scholar 

  33. Hansen M. and Anderko K., Constitution of binary alloys, Mc Graw Hill Book Comp. New York (1958)

    Google Scholar 

  34. Seith W., Johnen H. and Wagner J., Zur Kenntnis von Mischungslücken im flüssigen Zustand bei metallischen Zwei- und Dreistoffsystemen, Z. Metallkde., 46 (1955), 773

    Google Scholar 

  35. Predel B., Die Gleichgewichtsverhältnisse im System Gallium-Blei-Kadmium, Z. Metallkde., 52 (1961), 507

    Google Scholar 

  36. Langbein D., On the separation of alloys exhibiting a miscibility gap, In: The effect of gravity on the solidification of immiscible alloys, RIT/ESA/SSC Workshop, Sweden, ESA-SP 219, (1984), 3

    Google Scholar 

  37. Bewersdorff A., Görtier G.P., Klein H., Teilchentransport in fluiden Medien unter reduzierter Schwere, Z. Flugwiss. Weltraumforschung 5, (1981), 174–189

    Google Scholar 

  38. Walter H.U., FSLP Experiments on composite materials, 5th European Symposium Material Science under Microgravity, Schloß Elmau 1984, ESA-SP 222, p. 425

    Google Scholar 

  39. Walton A.G., Nucleation, Ed. by Zettlemoyer A.C., Dekker Marcel, New York, (1969), 225

    Google Scholar 

  40. Smoluchowski M., Drei Vorträge über Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen, Physik. Zeitschrift 17 (1916), 557

    Google Scholar 

  41. Zener C., Theory of growth of spherical precipitates from solid solutions, J. Appl. Phys. 20 (1949), 950–953

    Article  Google Scholar 

  42. Ratke L., Unpublished research, 1986

    Google Scholar 

  43. Levich G., Physicochemical hydrodynamics, Prentice-Hall, Engelwood Cliffs, N.J., 1962

    Google Scholar 

  44. Young N.O., Goldstein J.S., Block M.J., The motion of bubbles in a vertical temperature gradient, J. Fluid Mech. 6, (1959), 350–356

    Article  MATH  Google Scholar 

  45. Lifschitz I.M., Slyozov V.V., The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids 19, (1961) 35

    Article  Google Scholar 

  46. Wagnei C., Theorie der Alterung von Niederschlägen durch Umlösen, Z. Elekrochemie 65 (1961), 581–591

    Google Scholar 

  47. Ratke L., Thieringer W.K., The influence of particle motion on Ostwald ripening in liquids, Acta Met. 33, (1985), 1793–1802

    Article  Google Scholar 

  48. Langer J.S., Schwartz A.J., Kinetics of nucleation in near critical fluids, Phys. Rev. A21, (1980), 948–958

    MathSciNet  Google Scholar 

  49. Batchelor G.K., Sedimentation in a dilute dispersion of spheres, J. Fluid Mech. 52 (1972), 245

    Article  MATH  Google Scholar 

  50. Haber S., Hetsroni G., Sedimentation in a dilute dispersion of small droplets of various sizes, J. Colloid and Interface Sci. 79, (1981), 56

    Article  Google Scholar 

  51. Langbein D., Keimbildung und — Vereinigung beim Erstarren nicht mischbarer Legierungen, Forschungsbericht W 79 – 25 Bundesministerium für Forschung und Technologie, (1979)

    Google Scholar 

  52. Müller H., Zur allgemeinen Theorie der raschen Koagulation, Kolloidchem. Beihefte 27, (1927), 223

    Article  Google Scholar 

  53. Ratke L., Coarsening of dispersions by coagulation, in: Composites, both artificial and in-situ in the earth and space laboratory, Workshop Grenoble, Eds. Potard C., Sahm P.R., 1985, p.189

    Google Scholar 

  54. Williams M.M.R., On some exact solutions of the spacetime dependent coagulation equation for aerosols, J. Colloid and Interface Sci 101 (1984), 19

    Article  Google Scholar 

  55. Perepezko J.H., Galup C., Cooper K.P., Materials processing in the reduced gravity environment of space Ed. Rindone G.E., Elsevier, Amsterdam, (1982), 491

    Google Scholar 

  56. Predel B., Frebel M., Gust W., Untersuchung der thermodynamischen Eigenschaften flüssiger Gallium-Zinn-und Gallium-Wismut-Legierungen, J. Less Common Metals 17, (1969), 391

    Article  Google Scholar 

  57. Reger J.L., In material processing in space: Early experiments NASA, Washington, 1980

    Google Scholar 

  58. Lacy L., Otto G., In progress in astronautics and aeronautics 52, (1977), 495

    Google Scholar 

  59. Lacy L., Ang C.Y., In material processing in space: Early experiments NASA, Washington, 1980

    Google Scholar 

  60. Gelles S H., Markworth J., Microgravity studies in the liquid phase immiscible system Al-In. 15th AJAA conf. Los Angeles 1977, paper 77–122

    Google Scholar 

  61. Ahlborn H., Löhberg K., Aluminium — Indium experiment soloug — A sounding rocket experiment on immiscible alloys, 17th AJAA conf. New Orleans 1979, paper 79–0172

    Google Scholar 

  62. Potard C., Directional solidification of Al-In alloys at microgravity: Results of basic preparatory investigation, AJAA conf. New Orleans 1979, paper 79–0173

    Google Scholar 

  63. Carlberg T., Fredriksson H., The influence of microgravity on the structure of Bi-Zn alloys, Met. Trans. 11A, (1980), 1665–1676

    Google Scholar 

  64. Walter H.U., Preparation of dispersion alloys — Component separation during cooling and solidification of dispersions of immiscible alloys. Workshop on effect of gravity on solidification of immiscible alloys, Stockholm ESA SP-219, 1984, 47–67

    Google Scholar 

  65. Bergmann, Å., Fredriksson H., A study of the coalescence process inside the miscibility gap in Zn-Bi alloys, in: Material processing in reduced gravity MRS 9, 1982, 563–577

    Google Scholar 

  66. Fredriksson H., Space results on the solidification of immiscible alloy, in: The effect of gravity on the solidification of immiscible alloys, Stockholm, ESA SP-219, 1984, 25–34

    Google Scholar 

  67. Kneissl A., Fischmeister H., Particle coarsening in immiscible alloys under microgravity, 5th European Symposium on Material Sciences under Microgravity, ESA SP-222, 1984, 63–68

    Google Scholar 

  68. Ahlborn H., Löhberg K., Influences affecting separation in monotectic alloys under microgravity, Ibid 55–611984

    Google Scholar 

  69. Otto G., Stability of metallic dispersions, Ibid, 379–3881984

    Google Scholar 

  70. Bergman Å., Fredriksson H., Shahani H., The effect of gravity and temperature gradients on precipitation in immiscible alloys. To be published in Journal of Mat. Science

    Google Scholar 

  71. Christian, J.W., The theory of transformations in metals and alloys, Part I., Pergamon Press, second edition, Oxford 1975

    Google Scholar 

  72. Baum D., Otto G., Vits P., Acta astronautica 11 (1984) 239

    Article  Google Scholar 

  73. Walter H.U., Binary systems with miscibility gap in the liquid state, in: Materials science in space, Eds. Feuerbacher B., Hamacher H., Naumann R.J., Springer-Verlag Berlin 1986, p. 343

    Google Scholar 

  74. Fuchs N.A., The Mechanics of Aerosols, Pergamon Press, Oxford 1964

    Google Scholar 

  75. Drake R.L., A General Mathematical Survey of the Coagulation Equation, in: Topics in current aerosol research, Vol. 2, Ed. G.M. Hidy, J.R. Brock, Pergamon Press, Oxford 1970

    Google Scholar 

  76. Sahni D.C., An exact solution of Fokker-Planck equation and Brownian Coagulation in the transition regime, J. Colloid Interface Sci. 91 (1983), 418–429

    Article  Google Scholar 

  77. Frohberg G., Kraatz K.-H., Wever H., Seifdiffusion of Sn 112 and Sn 124 in liquid tin, Proc. 5th European Symposium Materials Sciences under Microgravity, Schloß Elmau 1984, ESA SP-222, 201–205

    Google Scholar 

  78. Frohberg G., Kraatz K.-H., Wever H., Microgravity experiments on liquid self- and interdiffusion, Proc. Dl-Symposium, Norderney 1986, Springer Verlag, to be published

    Google Scholar 

  79. Swalin R.A., On the theory of selfdiffusion in liquid metals, Acta metall. 7 (1959), 736

    Article  Google Scholar 

  80. Aaronson H.I., Lectures on the theory of Phase Transformations, Metallurgical Society of AIME, New York 1975

    Google Scholar 

  81. Thieringer W.K., D. Ph. — thesis, Der Einfluß konvektiver Diffusion auf die Vergröberung von Dispersionen, VDI-Verlag, Düsseldorf 1986

    Google Scholar 

  82. Ratke L., Thieringer W.K., Fischmeister H., Coarsening of immiscible liquid alloys by Ostwald ripening, loc.cit. [77]

    Google Scholar 

  83. Thieringer W.K., Ratke L., Coarsening of liquid Al-Pb dispersions, to be published in Acta metall

    Google Scholar 

  84. Ahlborn H., Löhberg K., Separation of immiscible alloys under reduced gravity, loc.cit. [77]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 European Space Agency, Paris Cedex, France

About this chapter

Cite this chapter

Predel, B., Ratke, L., Fredriksson, H. (1987). Systems with a Miscibility Gap in the Liquid State. In: Walter, H.U. (eds) Fluid Sciences and Materials Science in Space. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46613-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46613-7_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46615-1

  • Online ISBN: 978-3-642-46613-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation