Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

  • 588 Accesses

Abstract

Due to their finite size and the significant localization of their electrons upon excitation, silicon nanostructures in excited states undergo severe relaxation and thus show significant Stokes shift at a diameter less than 1.5 nm. The effect is much reduced at a larger size due to the improved structural rigidity and also due to the delocalization of the excited electrons. The latter can also be achieved by elongating the nanostructure in a certain direction. One-dimensional silicon nanowires present energy band structures of strong orientation and size dependences. In particular, <112> silicon nanowires always have indirect bandgaps if the cross-sectional aspect ratio of the (110) and (111) facets is smaller than 0.5. At a larger aspect ratio, the bandgap becomes direct. The bandgap can also be tuned by applying external stress, to direct one with a compression up to 5 %, but keeps indirect under a tensile stress. For two-dimensional silicon sheets, the possibility to tune the bandgap between indirect and direct is very high, by carefully controlling the magnitude and direction of strain application, very effective for engineering the electronic band structure of silicon nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 52.74
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cullis AG, Canham LT, Calcott P (1997) J Appl Phys 82:909

    Article  CAS  Google Scholar 

  2. Kim BH, Cho CH, Kim TW, Park NM, Sung GY (2005) Appl Phys Lett 86:091908

    Article  Google Scholar 

  3. Wolkin MV, Jorne J, Fauchet PM (1999) Phys Rev Lett 82:197

    Article  CAS  Google Scholar 

  4. Kanemitsu Y (1994) Phys Rev B 49:16845

    Article  CAS  Google Scholar 

  5. Tilley RD, Warner JH, Yamamoto K, Matsui I, Fujimori H (2005) Chem Commun (Cambridge) 14:1836

    Google Scholar 

  6. Wilcoxon JP, Samara GA, Provencio PN (1999) Phys Rev B 60:2704

    Article  CAS  Google Scholar 

  7. Garrido M, Lopez O, Gonzalez A, Perez-Rodriguez JR (2000) Morante and C. Bonafos. Appl Phys Lett 77:3143

    Article  CAS  Google Scholar 

  8. Holmes JD, Ziegler KJ, Doty RC, Pell LE, Johnston KP, Korgel BA (2001) J Am Chem Soc 123:3743

    Article  CAS  Google Scholar 

  9. Belomoin G, Therrien J, Nayfeh M (2000) Appl Phys Lett 77:779

    Article  CAS  Google Scholar 

  10. Wang X, Zhang RQ, Niehaus TA, Frauenheim Th, Lee ST (2007) J Phys Chem C 111:12588

    Article  CAS  Google Scholar 

  11. Li QS, Zhang RQ, Lee ST, Niehaus TA, Frauenheim Th (2008) J Chem Phys 128:244714

    Article  CAS  Google Scholar 

  12. Delerue C, Allan G, Lannoo M (1993) Phys Rev B 48:11024

    Article  CAS  Google Scholar 

  13. Wang LW, Zunger A (1994) J Phys Chem C 98:2158

    Article  CAS  Google Scholar 

  14. Yu DK, Zhang RQ, Lee ST (2002) J Appl Phys 92:7453

    Article  CAS  Google Scholar 

  15. Delley B, Steigmeier EF (1993) Phys Rev B 47:1397

    Article  CAS  Google Scholar 

  16. Ren SY, Dow JD (1992) Phys Rev B 45:6492

    Article  CAS  Google Scholar 

  17. Hirao M, Uda T (1994) Surf Sci 306:87

    Article  CAS  Google Scholar 

  18. Delley B, Steigmeier EF (1995) Appl Phys Lett 67:2370

    Article  CAS  Google Scholar 

  19. Wang X, Zhang RQ, Lee ST, Niehaus TA, Frauenheim Th (2007) Appl Phys Lett 90:123116

    Article  Google Scholar 

  20. Porezag D, Frauenheim TH, Köhler Th, Seifert G, Kaschner R (1995) Phys Rev B 51:12947

    Article  CAS  Google Scholar 

  21. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim Th, Suhai S, Seifert G (1998) Phys Rev B 58:7260

    Article  CAS  Google Scholar 

  22. Chelikowsky JR, Kronik L, Vasiliev I (2003) J Phys: Condens Matter 15:R1517

    Article  CAS  Google Scholar 

  23. Prendergast D, Grossman JC, Williamson AJ (2004) J Am Chem Soc 126:13827

    Article  CAS  Google Scholar 

  24. Puzder A, Williamson AJ, Grossman JC, Galli G (2003) J Am Chem Soc 125:2786

    Article  CAS  Google Scholar 

  25. Hirao M, Uda T (1994) Int J Quantum Chem 52:1113

    Article  CAS  Google Scholar 

  26. Porter AR, Towler MD, Needs R (2001) J Phys Rev B 64:035320

    Article  Google Scholar 

  27. Weissker H-Ch, Furthmüller J, Bechstedt F (2002) Phys Rev B 65:155328

    Article  Google Scholar 

  28. Onida G, Reining L, Rubio A (2002) Rev Mod Phys 74:601

    Article  CAS  Google Scholar 

  29. Hahn PH, Schmidt WG, Bechstedt F (2005) Phys Rev B 72:245425

    Article  Google Scholar 

  30. Benedict LX, Puzder A, Williamson AJ, Grossman JC, Galli G, Klepeis JE, Raty J-Y, Pankratov O (2003) Phys Rev B 68:085310

    Article  Google Scholar 

  31. Vasiliev I (2003) Phys Status Solidi B 239:19

    Article  CAS  Google Scholar 

  32. Vasiliev I, Ogut S, Chelikowsky JR (2001) Phys Rev Lett 86:1813

    Article  CAS  Google Scholar 

  33. Williamson AJ, Grossman JC, Hood RQ, Puzder A, Galli G (2002) Phys Rev Lett 89:196803

    Article  Google Scholar 

  34. Franceschetti A, Pantelides ST (2003) Phys Rev B 68:033313

    Article  Google Scholar 

  35. Luppi E, Degoli E, Cantele G, Ossicini S, Magri R, Ninno D, Bisi O, Pulci O, Onida G, Gatti M, Incze A, Sole ED (2005) Opt Mater 27:1008

    Article  CAS  Google Scholar 

  36. Niehaus TA, Suhai S, Sala FD, Lugli P, Elstner M, Seifert G, Frauenheim Th (2001) Phys Rev B 63:085108

    Article  Google Scholar 

  37. Fehér F (1977) Molekülspektroskopische Untersuchungen auf dem Gebiet der Silane und der Heterocyclischen Sufane, Forschungsbericht des Landes Nordrhein-Westfalen. Westdeutscher, Köln

    Book  Google Scholar 

  38. Garoufalis GS, Zdetsis AD (2001) Phys Rev Lett 87:276402

    Article  CAS  Google Scholar 

  39. Zdetsis AD (2006) Rev Adv Mater Sci 11:56

    CAS  Google Scholar 

  40. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  41. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  42. Puerto, MLD, Jain M, Chelikowski JR (2010) Phys Rev B 81:035309

    Google Scholar 

  43. Puzder A, Williamson AJ, Reboredo FA, Galli G (2003) Phys Rev Lett 91:157405

    Article  Google Scholar 

  44. Allan G, Delerue C, Lannoo M (1996) Phys Rev Lett 76:2961

    Article  CAS  Google Scholar 

  45. Sun J, Song J, Zhao Y, Liang WZ (2007) J Chem Phys 127:234107

    Article  Google Scholar 

  46. Draeger EW, Grossman JC, Williamson AJ, Galli G (2004) J Chem Phys 120:10807

    Article  CAS  Google Scholar 

  47. Hamel S, Williamson AJ, Wilson HF, Gygi F, Galli G, Ratner E, Wack D (2008) Appl Phys Lett 92:043115

    Article  Google Scholar 

  48. Wang X, Zhang RQ, Lee ST, Frauenheim Th, Niehaus TA (2008) Appl Phys Lett 93:243120

    Article  Google Scholar 

  49. Nayfeh MH, Rigakis N, Yamani Z (1997) Phys Rev B 56:2079

    Article  CAS  Google Scholar 

  50. Wang X, Zhang RQ, Lee ST, Frauenheim Th, Niehaus TA (2009) Appl Phys Lett 94:029902

    Article  Google Scholar 

  51. Wang Y, Zhang RQ, Frauenheim Th, Niehaus TA (2009) J Phys Chem C 113:12935

    Article  CAS  Google Scholar 

  52. Zhao XY, Wei CM, Yang L, Chou MY (2004) Phys Rev Lett 92:236805

    Article  Google Scholar 

  53. Read AJ, Needs RJ, Nash KJ, Canham LT, Calcott PDJ, Qteish A (1992) Phys Rev Lett 69:1232

    Article  CAS  Google Scholar 

  54. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) J Phys: Condens Matter 14:2745

    Article  CAS  Google Scholar 

  55. Lu AJ, Zhang RQ, Lee ST (2008) Nanotechnology 19:035708

    Article  CAS  Google Scholar 

  56. Lu AJ, Zhang RQ, Lee ST (2008) Appl Phys Lett 92:203109

    Article  Google Scholar 

  57. Persson MP, Xu HQ (2004) Nano Lett 4:2409

    Article  CAS  Google Scholar 

  58. Zhang RQ, Lifshitz Y, Ma DDD, Zhao YL, Frauenheim Th, Lee ST, Tong SY (2005) J Chem Phys 123:144703

    Article  CAS  Google Scholar 

  59. Haugerud BM, Bosworth LA, Belford RE (2003) J Appl Phys 94:4102–4107

    Article  CAS  Google Scholar 

  60. Lyons DM, Ryan KM, Morris MA, Holmes JD (2002) Nano Lett 2:811–816

    Article  CAS  Google Scholar 

  61. Audoit G, Mhuircheartaigh ÉN, Lipson SM, Morris MA, Blau WJ, Holmes JD (2005) J Mater Chem 15:4809–4815

    Article  CAS  Google Scholar 

  62. Morales AM, Lieber CM (1998) Science 279:208–211

    Article  CAS  Google Scholar 

  63. Lu AJ, Zhang RQ, Lee ST (2007) Appl Phys Lett 91:263107

    Article  Google Scholar 

  64. Huo J, Solanki R, Freeouf JL, Carruthers JR (2004) Nanotechnology 15:1848

    Article  CAS  Google Scholar 

  65. Tsay YF, Bendow B (1977) Phys Rev B 16:2663

    Article  CAS  Google Scholar 

  66. Goldthorpe IA, Marshall AF, McIntyre PC (2008) Nano Lett 8:4081–4086

    Article  CAS  Google Scholar 

  67. Goldthorpe IA, Marshall AF, McIntyre PC (2009) Nano Lett 9:3715–3719

    Article  CAS  Google Scholar 

  68. Peng X, Logan P (2010) Appl Phys Lett 96:143119

    Article  Google Scholar 

  69. Li CP, Lee CS, Ma XL, Wang N, Zhang RQ, Lee ST (2003) Adv Mater 15:607

    Article  CAS  Google Scholar 

  70. Wolkin MV, Jorne J, Fauchet PM, Allan G, Delerue C (1999) Phys Rev Lett 82:197–200

    Article  CAS  Google Scholar 

  71. Zhang YF, Tang YH, Wang N, Yu DP, Lee CS, Bello I, Lee ST (1998) Appl Phys Lett 72:1835

    Article  CAS  Google Scholar 

  72. Nakano H, Mitsuoka T, Harada M, Horibuchi K, Nozaki H, Takahashi N, Nonaka T, Seno Y, Nakamura H (2006) Angew Chem Int Edit 45:6303–6306

    Article  CAS  Google Scholar 

  73. Kim U, Kim I, Park Y, Lee K-Y, Yim S-Y, Park J-G, Ahn H-G, Park S-H, Choi H-J (2011) ACS Nano 5:2176–2181

    Article  CAS  Google Scholar 

  74. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666–669

    Article  CAS  Google Scholar 

  75. Okamoto H, Kumai Y, Sugiyama Y, Mitsuoka T, Nakanishi K, Ohta T, Nozaki H, Yamaguchi S, Shirai S, Nakano H (2010) J Am Chem Soc 132:2710–2718

    Article  CAS  Google Scholar 

  76. Sugiyama Y, Okamoto H, Mitsuoka T, Morikawa T, Nakanishi K, Ohta T, Nakano H (2010) J Am Chem Soc 132:5946–5947

    Article  CAS  Google Scholar 

  77. Kara A, Léandri C, Dávila M, De Padova P, Ealet B, Oughaddou H, Aufray B, Le Lay G (2009) J Supercond Nov Magn 22:259–263

    Article  CAS  Google Scholar 

  78. Le Lay G, Aufray B, Léandri C, Oughaddou H, Biberian JP, De Padova P, Dávila ME, Ealet B, Kara A (2009) Appl Surf Sci 256:524–529

    Article  Google Scholar 

  79. Aufray B, Kara A, Vizzini S, Oughaddou H, Leandri C, Ealet B, Le Lay G (2010) Appl Phys Lett 96:183102

    Article  Google Scholar 

  80. Zhang RQ, Lifshitz Y, Ma DDD, Zhao YL, Frauenheim T, Lee ST, Tong SY (2005) J Chem Phys 123:144703

    Article  CAS  Google Scholar 

  81. Hong K-H, Kim J, Lee S-H, Shin JK (2008) Nano Lett 8:1335–1340

    Article  CAS  Google Scholar 

  82. Huang L, Lu N, Yan J-A, Chou MY, Wang C-Z, Ho K-M (2008) J Phys Chem C 112:15680–15683

    Article  CAS  Google Scholar 

  83. Leu PW, Svizhenko A, Cho K (2008) Phys Rev B 77:235305

    Article  Google Scholar 

  84. Logan P, Peng X (2009) Phys Rev B 80:115322

    Article  Google Scholar 

  85. Peng X, Alizadeh A, Kumar SK, Nayak SK (2009) Int J Appl Mech 1:483–499

    Article  Google Scholar 

  86. Zhang C, De Sarkar A, Zhang RQ (2011) J Phys Chem C 115:23682

    Article  CAS  Google Scholar 

  87. Lu AJ, Zhang RQ (2008) Solid State Commun 145:275–278

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui-Qin Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Zhang, RQ. (2014). Novel Electronic Properties of Silicon Nanostructures. In: Growth Mechanisms and Novel Properties of Silicon Nanostructures from Quantum-Mechanical Calculations. SpringerBriefs in Molecular Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40905-9_4

Download citation

Publish with us

Policies and ethics

Navigation