Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

  • 540 Accesses

Abstract

It was the quantum confinement effect and photoluminescence that inspired the intensive researches in the research field of growth and properties of silicon nanostructures. A large volume of researches have been directed to experimental syntheses and characterizations of the various silicon nanostructures including zero-dimensional quantum dots and one-dimensional nanowires. Computational predictions of novel structures of pristine silicon nanostructures including silicon nanotubes have also been intensive. Distinguishing computational work has been done by us on the growth mechanism, surface properties, excited state properties, and energy band engineering of silicon nanostructures. Our studies are expected to promote the development of silicon-based nanoscience and nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wolkin MV, Jorne J, Fauchet PM, Allan G, Delerue C (1999) Phys Rev Lett 82:197

    Article  CAS  Google Scholar 

  2. Morales AM, Lieber CM (1998) Science 279:208

    Article  CAS  Google Scholar 

  3. Zhang YF, Tang YH, Wang N, Yu DP, Lee CS, Bello I, Lee ST (1998) Appl Phys Lett 72:1835

    Google Scholar 

  4. Kara A, Léandri C, Dávila M, De Padova P, Ealet B, Oughaddou H, Aufray B, Le Lay G (2009) J Supercond Nov Magn 22:259

    Google Scholar 

  5. Ehbrecht M, Kohn B, Huisken F, Laguna MA, Paillard V (1997) Phys Rev B 56:6958

    Article  CAS  Google Scholar 

  6. Ehbrecht M, Huisken F (1999) Phys Rev B 59:2975

    Article  CAS  Google Scholar 

  7. Ledoux G, Guillois O, Porterat D, Reynaud C, Huisken F, Kohn B, Paillard V (2000) Phys Rev B 62:15942

    Google Scholar 

  8. Mélinon P, Kéghélian P, Prével B, Perez A, Guiraud G, LeBrusq J, Lermé J, Pellarin M, Broyer M (1997) J Chem Phys 107:10278

    Article  Google Scholar 

  9. Mélinon P, Kéghélian P, Prével B, Dupuis V, Perez A, Champagnon B, Guyot Y, Pellarin M, Lermé J, Broyer M, Rousset JL, Delichère P (1998) J Chem Phys 108:4607

    Article  Google Scholar 

  10. Goldstein AN (1996) Appl Phys A Mater Sci Process 62:33

    Article  Google Scholar 

  11. Chelikowsky JR, Kronik L, Vasiliev I (2003) J Phys: Condens Matter 15:R1517

    Article  CAS  Google Scholar 

  12. Gupta Anoop, Swihart Mark T, Wiggers Hartmut (2009) Adv Funct Mater 19:696–703

    Article  CAS  Google Scholar 

  13. Wang X, Zhang RQ, Lee ST, Niehaus TA, Frauenheim T (2007) Appl Phys Lett 90:123116

    Article  Google Scholar 

  14. Wang X, Zhang RQ, Niehaus TA, Frauenheim T, Lee ST (2007) J Phys Chem C 111:12588

    Article  CAS  Google Scholar 

  15. Wang Y, Zhang RQ, Frauenheim T, Niehaus TA (2009) J Chem Phys C 113:12935

    Article  CAS  Google Scholar 

  16. Waser R (2002) Nanoelectronics and information technology: materials, processes, devices. Wiley, Weinheim

    Google Scholar 

  17. Zhang YF, Tang YH, Wang N, Yu DP, Lee CS, Bello I, Lee ST (1998) Appl Phys Lett 72:1835

    Article  CAS  Google Scholar 

  18. Liu HI, Maluf NI, Pease RFW (1992) J Vac Sci Technol B10:2846

    Google Scholar 

  19. Ono T, Saitoh H, Esashi M (1997) Appl Phys Lett 70:1852

    Article  CAS  Google Scholar 

  20. Wagner RS, Ellis WC (1964) Appl Phys Lett 4:89

    Article  CAS  Google Scholar 

  21. Frank FC (1949) Discov Faraday Soc 5:48

    Article  Google Scholar 

  22. Wang N, Zhang YF, Tang YH, Lee CS, Lee ST (1998) Phys Rev B58:R16024

    Google Scholar 

  23. Zhang YF, Liao LS, Chan WH, Lee ST, Sammynaiken R, Sham TK (2000) Phys Rev B 61:8298

    Article  CAS  Google Scholar 

  24. Zhou XT, Zhang RQ, Peng HY, Shang NG, Wang N, Bello I, Lee CS, Lee ST (2000) Chem Phys Lett 332:215–218

    Article  CAS  Google Scholar 

  25. Menon M, Richter E (1999) Phys Rev Lett 83:792

    Article  CAS  Google Scholar 

  26. Marsen B, Sattler K (1999) Phys Rev B 60:11593

    Google Scholar 

  27. Li BX, Cao PL, Zhang RQ, Lee ST (2002) Phys Rev B 65:125305

    Article  Google Scholar 

  28. Zhao Y, Yakobson BI (2003) Phys Rev Lett 91:035501

    Article  Google Scholar 

  29. Zhao Y, Yakobson BI (2005) Phys Rev Lett 95:115502

    Article  Google Scholar 

  30. Menon M, Srivastava D, Ponomareva I, Chernozatonskii LA (2004) Phys Rev B 70:125313

    Article  Google Scholar 

  31. Ponomareva I, Menon M, Srivastava D, Andriotis AN (2005) Phys Rev Lett 95:265502

    Article  Google Scholar 

  32. Ponomareva I, Menon M, Richter E, Andriotis AN (2006) Phys Rev B 74:125311

    Article  Google Scholar 

  33. Kagimura R, Nunes RW, Chacham H (2005) Phys Rev Lett 95:115502

    Article  CAS  Google Scholar 

  34. Nishio K, Morishita T, Shinoda W, Mikami M (2006) J Chem Phys 125:074712

    Article  Google Scholar 

  35. Cao JX, Gong XG, Zhong JX, Wu RQ (2006) Phys Rev Lett 97:136105

    Article  CAS  Google Scholar 

  36. Fthenakis ZG, Havenith RW, Menon M, Fowler PW (2007) Phys Rev B 75:155435

    Article  Google Scholar 

  37. Zhang RQ, Costa J, Bertran E (1996) Phys Rev B 53:7847

    Article  CAS  Google Scholar 

  38. Onida G, Andreoni W (1995) Chem Phys Lett 243:183

    Article  CAS  Google Scholar 

  39. Miyazaki T, Uda T, Štich I, Terakura K (1996) Chem Phys Lett 261:346

    Article  CAS  Google Scholar 

  40. Meleshko V, Morokov Yu, Schweigert V (1999) Chem Phys Lett 300:118

    Article  CAS  Google Scholar 

  41. Klein P, Urbassek HM, Frauenheim Th (1999) Phys Rev B 60:5478

    Google Scholar 

  42. Kratzer P (1997) J Chem Phys 106:6752

    Article  CAS  Google Scholar 

  43. Kratzer P, Hammer B, Nørskov JK (1995) Phys Rev B 51:13432

    Google Scholar 

  44. Lee SM, Lee YH, Kim NG (2000) Surf Sci 470:89

    Article  CAS  Google Scholar 

  45. Kratzer P, Pehlke E, Scheffler M, Raschke MB, HWfer U (1998) Phys Rev Lett 81:5596

    Google Scholar 

  46. Lehtonen O, Sundholm D (2005) Phys Rev B 72:085424

    Article  Google Scholar 

  47. Williamson AJ, Grossman JC, Hood RQ, Puzder A, Galli G (2002) Phys Rev Lett 89:196803

    Article  Google Scholar 

  48. Degoli E, Cantele G, Luppi E, Magri R, Ninno D, Bisi O, Ossicini S (2004) Phys Rev B 69:155411

    Article  Google Scholar 

  49. Puzder A, Williamson AJ, Grossman JC, Galli G (2003) J Am Chem Soc 125:2786

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui-Qin Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Zhang, RQ. (2014). Introduction. In: Growth Mechanisms and Novel Properties of Silicon Nanostructures from Quantum-Mechanical Calculations. SpringerBriefs in Molecular Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40905-9_1

Download citation

Publish with us

Policies and ethics

Navigation