On the Recognition of Four-Directional Orthogonal Ray Graphs

  • Conference paper
Mathematical Foundations of Computer Science 2013 (MFCS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8087))

  • 1445 Accesses

Abstract

Orthogonal ray graphs are the intersection graphs of horizontal and vertical rays (i.e. half-lines) in the plane. If the rays can have any possible orientation (left/right/up/down) then the graph is a 4-directional orthogonal ray graph (4-DORG). Otherwise, if all rays are only pointing into the positive x and y directions, the intersection graph is a 2-DORG. Similarly, for 3-DORGs, the horizontal rays can have any direction but the vertical ones can only have the positive direction. The recognition problem of 2-DORGs, which are a nice subclass of bipartite comparability graphs, is known to be polynomial, while the recognition problems for 3-DORGs and 4-DORGs are open. Recently it has been shown that the recognition of unit grid intersection graphs, a superclass of 4-DORGs, is NP-complete. In this paper we prove that the recognition problem of 4-DORGs is polynomial, given a partition {L,R,U,D} of the vertices of G (which corresponds to the four possible ray directions). For the proof, given the graph G, we first construct two cliques G 1,G 2 with both directed and undirected edges. Then we successively augment these two graphs, constructing eventually a graph \(\widetilde{G}\) with both directed and undirected edges, such that G has a 4-DORG representation if and only if \(\widetilde{G}\) has a transitive orientation respecting its directed edges. As a crucial tool for our analysis we introduce the notion of an S-orientation of a graph, which extends the notion of a transitive orientation. We expect that our proof ideas will be useful also in other situations. Using an independent approach we show that, given a permutation π of the vertices of U (π is the order of y-coordinates of ray endpoints for U), while the partition {L,R} of V ∖ U is not given, we can still efficiently check whether G has a 3-DORG representation.

This work was partially supported by (i) the DFG ESF EuroGIGA projects COMPOSE and GraDR, (ii) the EPSRC Grant EP/K022660/1, (iii) the EPSRC Grant EP/G043434/1, and (iv) the Berlin Mathematical School.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cabello, S., Cardinal, J., Langerman, S.: The clique problem in ray intersection graphs. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 241–252. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Chalopin, J., Gonçalves, D.: Every planar graph is the intersection graph of segments in the plane: extended abstract. In: Proc STOC 2009, pp. 631–638 (2009)

    Google Scholar 

  3. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation 9(3), 251–280 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Estivill-Castro, V., Noy, M., Urrutia, J.: On the chromatic number of tree graphs. Discrete Mathematics 223(1-3), 363–366 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Feder, T., Hell, P., Huang, J.: List homomorphisms and circular arc graphs. Combinatorica 19, 487–505 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Felsner, S.: 3-interval irreducible partially ordered sets. Order 11, 12–15 (1994)

    Article  MathSciNet  Google Scholar 

  7. Felsner, S., Habib, M., Möhring, R.H.: On the interplay of interval dimension and dimension. SIAM Journal on Discrete Mathematics 7, 32–40 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Habib, M., Paul, C., Viennot, L.: Partition refinement techniques: An interesting algorithmic tool kit. Int. J. Found. Comput. Sci. 10(2), 147–170 (1999)

    Article  MathSciNet  Google Scholar 

  9. Hartman, I.-A., Newman, I., Ziv, R.: On grid intersection graphs. Discrete Mathematics 87(1), 41–52 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kratochvíl, J.: A special planar satisfiability problem and a consequence of its NP-completeness. Discrete Applied Mathematics 52(3), 233–252 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kratochvíl, J., Matoušek, J.: NP-hardness results for intersection graphs. Commentationes Mathematicae Universitatis Carolinae 30(4), 761–773 (1989)

    MathSciNet  MATH  Google Scholar 

  12. Kratochvíl, J., Matoušek, J.: Intersection graphs of segments. J. Comb. Theory, Ser. B 62(2), 289–315 (1994)

    Article  MATH  Google Scholar 

  13. McConnell, R.: Linear-time recognition of circular-arc graphs. In: Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science, pp. 386–394 (2001)

    Google Scholar 

  14. Mustaţă, I., Pergel, M.: Unit grid intersection graphs: recognition and properties (in preparation, 2013)

    Google Scholar 

  15. Otachi, Y., Okamoto, Y., Yamazaki, K.: Relationships between the class of unit grid intersection graphs and other classes of bipartite graphs. Discrete Applied Mathematics 155(17), 2383–2390 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rao, W., Orailoglu, A., Karri, R.: Logic map** in crossbar-based nanoarchitectures. IEEE Design & Test of Computers 26(1), 68–77 (2009)

    Article  Google Scholar 

  17. Richerby, D.: Interval bigraphs are unit grid intersection graphs. Discrete Mathematics, 1718–1719 (2009)

    Google Scholar 

  18. Shrestha, A., Tayu, S., Ueno, S.: Orthogonal ray graphs and nano-PLA design. In: Proc. IEEE ISCAS 2009, pp. 2930–2933 (2009)

    Google Scholar 

  19. Shrestha, A.M.S., Tayu, S., Ueno, S.: On orthogonal ray graphs. Discrete Appl. Math. 158(15), 1650–1659 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Soto, J.A., Telha, C.: Jump number of two-directional orthogonal ray graphs. In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS, vol. 6655, pp. 389–403. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  21. Trotter, W.: Combinatorics and Partially Ordered Sets. The Johns Hopkins University Press (1992)

    Google Scholar 

  22. Uehara, R.: Simple geometrical intersection graphs. In: Nakano, S.-I., Rahman, M. S. (eds.) WALCOM 2008. LNCS, vol. 4921, pp. 25–33. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Felsner, S., Mertzios, G.B., Musta, I. (2013). On the Recognition of Four-Directional Orthogonal Ray Graphs. In: Chatterjee, K., Sgall, J. (eds) Mathematical Foundations of Computer Science 2013. MFCS 2013. Lecture Notes in Computer Science, vol 8087. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40313-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40313-2_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40312-5

  • Online ISBN: 978-3-642-40313-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation