The Family Chlorobiaceae

  • Reference work entry
  • First Online:
The Prokaryotes

Abstract

Since the discovery of the green sulfur bacteria and the first description by Larsen (1952), this group of bacteria has gained much interest because of a number of highly interesting features. These include the unique structures of the photosynthetic apparatus and the presence of small organelles, the chlorosomes, which act as light-harvesting antenna. Chlorosomes are very powerful light receptors that can capture minute amounts of light and enable the green sulfur bacteria to perform photosynthesis and to grow at very low-light intensities. This has important ecological consequences, because the efficient light harvesting determines the ecological niche of these bacteria at the lowermost part of stratified environments, where the least of light is available.

Furthermore, the strict dependency on photosynthesis to provide energy for growth and the obligate phototrophy of the green sulfur bacteria together with their characteristic sulfur metabolism has provoked much interest in their physiology, ecology, and genomics. The oxidation of sulfide as the outmost important photosynthetic electron donor of the green sulfur bacteria involves the deposition of elemental sulfur globules outside the cells and separates the process of sulfide oxidation to sulfate clearly into two steps. In the phylogenetic-based taxonomy, the green sulfur bacteria are treated as family Chlorobiaceae with the genera Chlorobium, Chlorobaculum, Prosthecochloris, and Chloroherpeton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alexander B, Andersen JH, Cox RP, Imhoff JF (2002) Phylogeny of green sulfur bacteria on the basis of gene sequences of 16S rRNA and of the Fenna-Matthews-Olson protein. Arch Microbiol 178:131–140

    CAS  PubMed  Google Scholar 

  • Alexander B, Imhoff JF (2006) Communities of green sulfur bacteria in different marine and saline habitats analyzed by gene sequences of 16S rRNA and of the Fenna-Matthews-Olson protein. Int Microbiol 9:259–266

    CAS  PubMed  Google Scholar 

  • Bias U (1985) Zur Freisetzung von Sulfat, Verwertung von Cystein und Vorkommen von Sulfolipiden bei Chlorobium. Doctoral thesis, University of Bonn

    Google Scholar 

  • Biebl H, Pfennig N (1978) Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Arch Microbiol 117:9–16

    CAS  Google Scholar 

  • Blankenship RE, Olson JM, Miller M (1995a) Antenna complexes from green photosynthetic bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 399–435

    Google Scholar 

  • Blankenship RE, Madigan MT, Bauer CE (eds) (1995b) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht

    Google Scholar 

  • Brock TD (1978) Thermophilic microorganisms and life at high temperatures. Springer, New York

    Google Scholar 

  • Brown CM, Herbert RA (1977) Ammonia assimilation in purple and green sulfur bacteria. FEMS Lett 1:39–42

    CAS  Google Scholar 

  • Bryant DA, Costas AMG, Maresca JA et al (2007) Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic acidobacterium. Science 317:523–526

    CAS  PubMed  Google Scholar 

  • Bryant DA, Liu Z, Li T, Zhao F, Costas AMG, Klatt CG, Ward DM, Frigaard N-U, Overmann J (2012) Comparative and functional genomics of anoxygenic green bacteria from the taxa Chlorobi, Chloroflexi, and Acidobacteria. In: Burnap RL, Vermaas WFJ (eds) Functional genomics and evolution of photosynthetic systems, vol 33, Advances in Photosynthesis and Respiration. Springer, New York, pp 47–102

    Google Scholar 

  • Caumette P, Pagano M, Saint-Jean L (1983) Vertical distribution of phytoplankton, bacteria and zooplankton in a stratified part of Bietri Bay (Ebrie Lagoon, Ivory Coast). Trophic relationships. Hydrobiologia 106:135–148

    Google Scholar 

  • Caumette P (1984) Distribution and characterization of phototrophic bacteria isolated from the water of Bietri Bay (Ebrie Lagoon, Ivory Coast). Can J Microbiol 30:273–284

    CAS  Google Scholar 

  • Clayton RK, Sistrom WR (eds) (1978) The photosynthetic bacteria. Plenum, New York

    Google Scholar 

  • Cohen Y, Krumbein WE, Shilo M (1977) Solar lake (Sinai). 2. Distribution of photosynthetic microorganisms and primary production. Limnol Oceanogr 22:609–620

    CAS  Google Scholar 

  • Cohen-Bazire G, Pfennig N, Kunisawa R (1964) The fine structure of green bacteria. J Cell Biol 22:207–225

    CAS  PubMed Central  PubMed  Google Scholar 

  • Costas AMG, Tsukatani Y, Rijpstra WIC, Schouten S, Welander PV, Summons RE, Bryant DA (2012) Identification of the bacteriochlorophylls, carotenoids, quinones, lipids, and hopanoids of “Candidatus Chloracidobacterium thermophilum”. J Bacteriol 194:1158–1168

    CAS  Google Scholar 

  • Cruden DJ, Stanier RY (1970) The characterization of Chlorobium vesicles and membranes isolated from green bacteria. Arch Microbiol 72:115–134

    CAS  Google Scholar 

  • Cviic V (1960) Apparition d’eau rouge dans le Veliko Jezero (Ile de Mljet). Rapports et Procès-Verbeaux des Reunions de la Commission Internationale de l’Exloration Scientifique de la Mer Mediterranée 15:79–81

    Google Scholar 

  • Czeczuga B (1968) Primary production of the green hydrosulfuric bacteria Chlorobium limicola Nads. (Chlorobacteriaceae). Photosynthetica 2:11–15

    Google Scholar 

  • Eisen JA, Nelson KE, Paulsen IT et al (2002) The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green sulfur bacterium. Proc Natl Acad Sci USA 99:9509–9514

    CAS  PubMed Central  PubMed  Google Scholar 

  • Evans MCW, Buchanan BB, Arnon DI (1966) A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc Natl Acad Sci USA 55(4):928–934

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feiler U, Hauska G (1995) The reaction center of green sulfur bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 665–685

    Google Scholar 

  • Fenna RE, Matthews BW, Olson JM, Shaw EK (1974) Structure of a bacteriochlorophyll-protein from the green photosynthetic bacterium Chlorobium limicola: crystallographic evidence for a trimer. J Mol Biol 84:231–240

    CAS  PubMed  Google Scholar 

  • Ferguson MAJ, Williams AF (1988) Cell-free anchoring of proteins via glycosylphosphatidyl inositol structures. Annu Rev Biochem 57:285–320

    CAS  PubMed  Google Scholar 

  • Figueras JB, Garcia-Gil LJ, Abella CA (1997) Phylogeny of the genus Chlorobium based on 16S rDNA sequence. FEMS Microbiol Lett 152:31–36

    CAS  PubMed  Google Scholar 

  • Frigaard N-U, Dahl C (2008) Sulfur metabolism in phototrophic sulfur bacteria. Adv Microb Physiol 54:103–200

    Google Scholar 

  • Frydman B, Rappaport H (1963) Non-chlorophyllous pigments of Chlorobium thiosulfatophilum in chlorobiumquinone. J Am Chem Soc 85:823–825

    CAS  Google Scholar 

  • Fuchs G, Stupperich E, Eden G (1980a) Autotrophic CO2 fixation in Chlorobium limicola. Evidence for the operation of a reductive tricarboxylic acid cycle in growing cells. Arch Microbiol 128:64–71

    CAS  Google Scholar 

  • Fuchs G, Stupperich E, Jaenchen R (1980b) Autotrophic CO2 fixation in Chlorobium limicola. Evidence against the operation of the Calvin cycle in growing cells. Arch Microbiol 128:56–63

    CAS  Google Scholar 

  • Fuhrmann S, Overmann J, Pfennig N, Fischer U (1993) Influence of vitamin B12 and light on the formation of chlorosomes in green- and brown-colored Chlorobium species. Arch Microbiol 160:192–198

    Google Scholar 

  • Gibson J, Pfennig N, Waterbury JB (1984) Chloroherpeton thalassium gen. nov. et spec. nov., a non-filamentous, flexing and gliding green sulfur bacterium. Arch Microbiol 138:96–101

    CAS  PubMed  Google Scholar 

  • Gibson J (2001) Genus III. Chloroherpeton. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, vol 1, The Archaea and the deeply branching and phototrophic bacteria. Springer, New York, pp 612–614

    Google Scholar 

  • Gietzen J (1931) Untersuchungen über marine Thiorhodaceen. Zent Bakteriol Parasitenkd Hyg Abt 2(83):183–218

    Google Scholar 

  • Gloe A, Pfennig N, Brockmann H et al (1975) A new bacteriochlorophyll from brown-colored Chlorobiaceae. Arch Microbiol 102:103–109

    CAS  PubMed  Google Scholar 

  • Gorlenko VM (1970) A new phototrophic green sulfur bacterium—Prosthecochloris aestuarii nov. gen. nov. sp. Z Allg Mikrobiol 10:147–149

    CAS  PubMed  Google Scholar 

  • Gorlenko VM (1972) Phototrophic brown sulfur bacteria Pelodictyon phaeum nov. sp. Mikrobiologiia 41:370–371

    CAS  PubMed  Google Scholar 

  • Gorlenko VM (2001) Genus V. Prosthecochloris. In: Boone DR, Castenholz RW (eds) The Archaea and the deeply branching and phototrophic Bacteria. Bergey’s manual of systematic bacteriology 2nd edn, vol 1, Springer, New York, pp 617–620

    Google Scholar 

  • Gorlenko VM, Lebedeva EV (1971) New green sulfur bacteria with appendages. Mikrobiologiia 40:1035–1039

    CAS  PubMed  Google Scholar 

  • Gorlenko VM, Kuznetsov SI (1971) Vertical distribution of photosynthetic bacteria in Lake Konon’er in Mari ASSR. Mikrobiologiia 40:746–747

    CAS  PubMed  Google Scholar 

  • Heising S, Richter L, Ludwig W, Schink B (1999) Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a “Geospirillum” sp. strain. Arch Microbiol 172:116–124

    CAS  PubMed  Google Scholar 

  • Iino T, Mori K, Uchino Y, Nakagawa T, Harayama S, Suzuki K (2010) Ignavibacterium album gen. nov., sp. nov., a moderately thermophilic anaerobic bacterium isolated from microbial mats at a terrestrial hot spring, and proposal of Ignavibacteria classis nov. for a novel lineage at the periphery of the green sulfur bacteria. Int J Syst Evol Microbiol 60:1376–1382

    CAS  PubMed  Google Scholar 

  • Imhoff JF (1988a) Halophilic phototrophic bacteria. In: Rodriguez-Valera F (ed) Halophilic bacteria. CRC Press, Boca Raton, pp 85–108

    Google Scholar 

  • Imhoff JF (1988b) Anoxygenic phototrophic bacteria. In: Austin B (ed) Methods in aquatic bacteriology. Wiley, Chichester, pp 207–240

    Google Scholar 

  • Imhoff JF (1988c) Lipids, fatty acids and quinones in taxonomy and phylogeny of anoxygenic phototrophic bacteria. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E, Trüper HG (eds) Green photosynthetic bacteria. Plenum, New York, pp 223–232

    Google Scholar 

  • Imhoff JF (1999) A phylogenetically oriented taxonomy of anoxygenic phototrophic bacteria. In: Pescheck GA, Löffelhard W, Schmetterer G (eds) The phototrophic prokaryotes. Plenum, New York, pp 763–774

    Google Scholar 

  • Imhoff JF (2001) True marine and halophilic anoxygenic phototrophic bacteria. Arch Microbiol 176:243–254

    CAS  PubMed  Google Scholar 

  • Imhoff JF (2002) Phototrophic purple and green bacteria in marine and hypersaline environments. In: Bitton G (ed) The Encyclopedia of environmental microbiology, John Wiley & Sons, Hoboken, New Jersey, pp 2470–2489

    Google Scholar 

  • Imhoff JF (2003) Phylogenetic taxonomy of the family Chlorobiaceae on the basis of 16S rRNA and fmo (Fenna Matthews-Olson protein) gene sequences. Int J Syst Evol Microbiol 53:941–951

    CAS  PubMed  Google Scholar 

  • Imhoff JF (2011) Functional gene studies of pure cultures are the basis of systematic studies of environmental communities of phototrophic bacteria and their species specific analyses. BISMiS Bull 2:107–115

    Google Scholar 

  • Imhoff JF, Bias-Imhoff U (1995) Lipids, quinones and fatty acids of anoxygenic phototrophic bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 179–205

    Google Scholar 

  • Imhoff JF, Thiel V (2010) Taxonomy and phylogeny of Chlorobiaceae. Photosynth Res 104:123–136

    CAS  PubMed  Google Scholar 

  • Ivanovsky RN, Sintsov NV, Kondratieva EN (1980) ATP-linked citrate lyase activity in the green sulfur bacterium Chlorobium limicola forma thiosulfatophilum. Arch Microbiol 128:239–241

    Google Scholar 

  • Jensen MT, Knudsen J, Olson JM (1991) A novel aminoglycosphingolipid found in Chlorobium limicola f. thiosulfatophilim 6230. Arch Microbiol 156:248–254

    CAS  Google Scholar 

  • Jerlov NG (1951) Optical studies of ocean waters. In: Petterson H (ed) Reports of the Swedish deep-sea expedition 1947–1948, vol 3. Erlanders Boktrycheri AB, Göteborg, p 1

    Google Scholar 

  • Jochum T, Reddy CM, Eichhöfer A, Buth G, Szmytkowski J, Kalt H, Moss D, Balaban TS (2008) The supramolecular organization of self-assembling chlorosomal bacteriochlorophyll c, d, or e mimics. Proc Natl Acad Sci USA 105:12736–12741

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jørgensen BB, Fossing H, Wirsen CO, Jannasch HW (1991) Sulfide oxidation in the anoxic Black Sea chemocline. Deep-Sea Res 38(Suppl 2):1083–1103

    Google Scholar 

  • Kadnikov VV, Mardanov AV, Podosokorskaya OA, Gavrilov SN, Kublanov IV, Beletsky AV, Bonch-Osmolovskaya EA, Ravin NV (2013) Genomic analysis of Melioribacter roseus, facultatively anaerobic organotrophic bacterium representing a novel deep lineage within Bacteroidetes/Chlorobi group. Plos One 8:e53047

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kanzler BEM, Pfannes KR, Vogl K, Overmann J (2005) Molecular characterization of the nonphotosynthetic partner bacterium in the consortium “Chlorochromatium aggregatum”. Appl Environ Microbiol 71:7434–7441

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kenyon CN (1978) Complex lipids and fatty acids of photosynthetic bacteria. In: Clayton RK, Sistrom WR (eds) The photosynthetic bacteria. Plenum, New York, pp 281–313

    Google Scholar 

  • Kenyon CN, Gray AM (1974) Preliminary analysis of lipids and fatty acids of green bacteria and Chloroflexus. J Bacteriol 120:131–138

    CAS  PubMed Central  PubMed  Google Scholar 

  • Keppen OI, Berg IA, Lebedeva NV, Taisova AS, Kolganova TV, Slobodova NV, Bulygina ES, Tourova TP, Ivanovsky RN (2008a) Chlorobaculum macestae sp nov., a new green sulfur bacterium. Mikrobiologiia 77:69–77

    CAS  Google Scholar 

  • Keppen OI, Tourova TP, Ivanovsky RN, Lebedeva NV, Baslerov RV, Berg IA (2008b) Phylogenetic position of three strains of green sulfur bacteria. Mikrobiologiia 77:243–246

    CAS  Google Scholar 

  • Knudsen E, Jantzen E, Bryn K, Ormerod JG, Sirevåg R (1982) Quantitative and structural characteristics of lipids in Chlorobium and Chloroflexus. Arch Microbiol 132:149–154

    CAS  Google Scholar 

  • Kumar PA, Srinivas TRN, Sasikala C, Ramana CV, Süling J, Imhoff JF (2009) Prosthecochloris indica sp. nov., a novel green sulfur bacterium from a marine aquaculture pond, Kakinada, India. J Gen Appl Microbiol 55:163–169

    CAS  Google Scholar 

  • Lapage SP, Sneath PHA, Lessel EF, Skerman VBD, Seelige HPR, Clark WA (eds) (1992) International code of nomenclature of bacteria (1990 Revision). Bacteriological code. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Larsen H (1952) On the culture and general physiology of the green sulphur bacteria. J Bacteriol 64:187–196

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lippert KD, Pfennig N (1969) Die Verwertung von molekularem Wasserstoff durch Chlorobium thiosulfatophilum Wachstum und CO2 Fixierung. Arch Mikrobiol 65:29–47

    CAS  PubMed  Google Scholar 

  • Liu Z, Klatt CG, Ludwig M, Rusch DB, Jensen SI, Kühl M, Ward DM, Bryant DA (2012) “Candidatus Thermochlorobacter aerophilum”: an aerobic chlorophotoheterotrophic member of the phylum Chlorobi defined by metagenomics and metatranscriptomics. ISME J. doi:10.1038/ismej.2012.24

    Google Scholar 

  • Low MG, Slatid AE (1988) Structural and functional roles of glycosyl phosphatidyl inositol in membranes. Science 239:268–275

    CAS  PubMed  Google Scholar 

  • Manske AK, Glaeser J, Kuypers MMM, Overmann J (2005) Physiology and phylogeny of green sulfur bacteria forming a monospecific phototrophic assemblage at a depth of 100 m in the Black Sea. Appl Environ Microbiol 71:8049–8060

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matheron R, Baulaigue R (1977) Influence de la penetration de la lumiere solaire sur le development des bacteries phototrophes sulfureuses dans les environments marines. Can J Microbiol 23:267–270

    CAS  PubMed  Google Scholar 

  • Matheron R, Baulaigue R (1972) Bactéries photosynthétiques sulfureuses marines. Assimilation des substances organiques et minérales, et influence de la teneur en chlorure de sodium du milieu de culture sur leur développement. Arch Microbiol 86:291–304

    CAS  Google Scholar 

  • Matheron R, Baulaigue R (1976) On the ecology of marine Chromatiaceae and Chlorobiaceae. Ann Microbiol 127:515–520

    CAS  Google Scholar 

  • Meyer TE, Donohue TJ (1995) Cytochromes, iron sulfur and copper proteins mediating electron transfer from the cyt bc1 complex to photosynthetic reaction center complexes. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 725–745

    Google Scholar 

  • Meyer TE, Cusanovich MA (2003) Discovery and characterization of electron transfer proteins in the photosynthetic bacteria. Photosynth Res 76:111–126

    CAS  PubMed  Google Scholar 

  • Montesinos E, Guerrero R, Abella C, Esteve I (1983) Ecology and physiology of the competition for light between Chlorobium limicola and Chlorobium phaeobacteroides in natural habitats. Appl Environ Microbiol 46:1007–1016

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nicholson JAM, Stolz JF, Pierson BK (1987) Structure of a microbial mat at Great Sippewissett Marsh, Cape Cod, Massachusetts. FEMS Microbiol Ecol 45:343–364

    Google Scholar 

  • Olson JM (1980) Chlorophyll organization in green photosynthetic bacteria. Biochim Biophys Acta 594:33–51

    CAS  PubMed  Google Scholar 

  • Olson JM, Shaw EK, Gaffney JS, Scandella CJ (1983) A fluorescent aminolipid from a green photosynthetic bacterium. Biochemistry 22:1819–1827

    CAS  Google Scholar 

  • Olson JM, Shaw EK, Gaffney JS, Scandella CJ (1984) Chlorobium aminolipid. A new membrane lipid from green sulfur bacteria. In: Sybesma C (ed) Advances in photosynthesis research, vol 3. Nijhoff/Junk, The Hague, pp 139–142

    Google Scholar 

  • Overmann J (2001) Green sulfur bacteria. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, The Archaea and the deeply branching and phototrophic bacteria. Springer, New York, pp 601–623

    Google Scholar 

  • Overmann J, Tuschak C (1997) Phylogeny and molecular fingerprinting of green sulfur bacteria. Arch Microbiol 167:302–309

    CAS  PubMed  Google Scholar 

  • Overmann J, Pfennig N (1989) Pelodictyon phaeoclathratiforme sp. nov., a new brown-colored member of the Chlorobiaceae forming net-like colonies. Arch Microbiol 152:401–406

    CAS  Google Scholar 

  • Overmann J, Cypionka H, Pfennig N (1992) An extremely low-light-adapted phototrophic sulfur bacterium from the Black Sea. Limnol Oceanogr 37:150–155

    CAS  Google Scholar 

  • Pfannes KR, Vogl K, Overmann J (2007) Heterotrophic symbionts of phototrophic consortia: members of a novel diverse cluster of Betaproteobacteria characterized by a tandem rrn operon structure. Environ Microbiol 9:2782–2794

    CAS  PubMed  Google Scholar 

  • Pfennig N (1968) Chlorobium phaeobacteroides nov. spec. und C. phaeovibrioides nov. spec., zwei neue Arten der grünen Schwefelbakterien. Arch Microbiol 63:224–226

    CAS  Google Scholar 

  • Pfennig N (1980) Syntrophic mixed cultures and symbiotic consortia with phototrophic bacteria. In: Gottschalk G, Pfennig N, Werner H (eds) Anaerobes and anaerobic infections. G. Fischer, Stuttgart, pp 127–137

    Google Scholar 

  • Pfennig N (1989a) Green sulfur bacteria. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds), Bergey’s manual of systematic bacteriology, 1st edn, vol. 1, Springer, New York, pp 1682–1697

    Google Scholar 

  • Pfennig N (1989b) Ecology of phototrophic purple and green sulfur bacteria. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria, Springer. Berlin, Heidelberg/New York, pp 97–116

    Google Scholar 

  • Pfennig N, Trüper HG (1971) Higher taxa of the phototrophic bacteria. Int J Syst Bacteriol 21:17–18

    Google Scholar 

  • Pfennig N, Trüper HG (1981) Isolation of members of the families Chromatiaceae and Chlorobiaceae. In: Starr M, Stolp H, Trüper H, Balows A, Schlegel H (eds) The prokaryotes. A handbook on habitats, isolation and identification of bacteria. Springer, Berlin, pp 279–289

    Google Scholar 

  • Pfennig N, Overmann J (2001a) Genus I. Chlorobium. In: Boone DR, Castenholz RW (eds) The Archaea and the deeply branching and phototrophic Bacteria. Bergey’s manual of systematic bacteriology 2nd edn, vol 1, Springer, New York, pp 605–610

    Google Scholar 

  • Pfennig N, Overmann J (2001b) Genus IV. Pelodictyon. In: Boone DR, Castenholz RW (eds) The Archaea and the deeply branching and phototrophic Bacteria. Bergey's manual of systematic bacteriology 2nd edn, vol 1, Springer, New York, pp 614–617

    Google Scholar 

  • Pfennig N, Lippert KD (1966) Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch Microbiol 55:245–256

    CAS  Google Scholar 

  • Pierson BK, Castenholz RW (1974) A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol 100:5–24

    CAS  PubMed  Google Scholar 

  • Podosokorskaya OA, Kadnikov VV, Gavrilov SN, Mardanov AV, Merkel AY, Karnachuk OV, Ravin NV, Bonch-Osmolovskaya EA, Kublanov IV (2013) Characterization of Melioribacter roseus gen. nov., sp. nov., a novel facultatively anaerobic thermophilic cellulolytic bacterium from the class Ignavibacteria, and a proposal of a novel bacterial phylum Ignavibacteriae. Environm Microbiol doi:10.1111/1462-2920.12067

    Google Scholar 

  • Powls R, Redfearn E, Trippett S (1968) The structure of chlorobiumquinone. Biochem Biophys Res Commun 33:408–411

    CAS  PubMed  Google Scholar 

  • Puchkova NN, Gorlenko VM (1976) New brown chlorobacteria Prosthecochloris phaeoasteroidea nov. sp. Mikrobiologiia 45:655–660

    CAS  PubMed  Google Scholar 

  • Puchkova NN (1984) Green sulfur bacteria inhabiting shallow saline water bodies. Mikrobiologiia 53:324–328

    CAS  Google Scholar 

  • Puchkova NN, Gorlenko VM (1982) Chlorobacterium chlorovibrioides, nov. sp., a new green sulfur bacterium. Mikrobiologiia 51:118–124

    CAS  Google Scholar 

  • Redfearn ER, Powls R (1968) The quinones of green photosynthetic bacteria. Biochem J 106:50

    Google Scholar 

  • Repeta DJ, Simpson DJ, Jørgensen BB, Jannasch HW (1989) Evidence for anoxygenic photosynthesis from the distribution of bacteriochlorophylls in the Black Sea. Nature 342:69–72

    CAS  PubMed  Google Scholar 

  • Schmidt K (1978) Biosynthesis of carotenoids. In: Clayton RK, Sistrom WR (eds) The photosynthetic bacteria. Plenum, New York, pp 729–750

    Google Scholar 

  • Schmidt K (1980) A comparative study on the composition of chlorosomes (chlorobium vesicles) and the cytoplasmic membrane from Chloroflexus aurantiacus strain OK-70-fl and Chlorobium limicola f. thiosufatophilum strain 6230. Arch Microbiol 124:21–31

    CAS  Google Scholar 

  • Sintsov NV, Ivanovsky RN, Kondratieva EN (1980) ATP-dependent citrate lyase in the green phototrophic bacterium, Chlorobium limicola. Mikrobiologiia 49:514–516

    CAS  PubMed  Google Scholar 

  • Steinmetz MA, Fischer U (1982) Cytochromes of green sulfur bacterium Chlorobium vibrioforme f.sp. thiosulfatophilum. Purification, characterization and sulfur metabolism. Arch Microbiol 131:19–26

    CAS  Google Scholar 

  • Strzeszewski B (1913) Beiträge zur Kenntnis der Schwefelflora in der Umgebung von Krakau. Bull Int Acad Sci Cracovie, Ser B Sci Nat I:309–334

    Google Scholar 

  • Suckow R (1966) Schwefelmikrobengesellschaften der See- und Boddengewässer von Hiddensee. Z Allg Mikrobiol 6:309–315

    Google Scholar 

  • Szafer W (1910) Zur Kenntnis der Schwefelflora in der Umgebung von Lemberg. Bull Int Acad Sci Cracovie, Ser B, 3:160–167

    Google Scholar 

  • Trüper HG (1970) Culture and isolation of phototrophic sulfur bacteria from the marine environment. Helgol Wiss Meeresunters 20:6–16

    Google Scholar 

  • Trüper HG (1981) Photolithotrophic sulphur oxidation. In: Bothe H, Trebst A (eds) Biology of inorganic nitrogen and sulfur. Springer, Berlin, pp 199–211

    Google Scholar 

  • Trüper HG, Genovese S (1968) Characterization of photosynthetic sulfur bacteria causing red water in Lake Faro (Messina, Sicily). Limnol Oceanogr 13:225–232

    Google Scholar 

  • Trüper HG, Pfennig N (1992) The family Chlorobiaceae. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. A handbook on the biology of bacteria. Ecophysiology, isolation, identification, applications, 2nd edn. Springer, New York, pp 3583–3592 (Chap 195)

    Google Scholar 

  • Van Gemerden H, Mas J (1995) Ecology of phototrophic sulfur bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 49–85

    Google Scholar 

  • Vermeglio A, Joliot P, Joliot A (1995) Organization of electron transfer components and supoercomplexes. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 279–295

    Google Scholar 

  • Vila X, Guyoneaud R, Cristina XP et al (2002) Green sulfur bacteria from hypersaline Chiprana Lake (Monegros, Spain): habitat description and phylogenetic relationship of isolated strains. Photosynth Res 71:165–172

    CAS  PubMed  Google Scholar 

  • Vogl K, Glaeser J, Pfannes KR, Wanner G, Overmann J (2006) Chlorobium chlorochromatii sp. nov., a symbiotic green sulfur bacterium isolated from the phototrophic consortium “Chlorochromatium aggregatum”. Arch Microbiol 185:363–372

    CAS  PubMed  Google Scholar 

  • Wahlund TM, Woese CR, Castenholz RW, Madigan MT (1991) A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov. Arch Microbiol 156:81–90

    CAS  Google Scholar 

  • Wahlund TM, Madigan MT (1993) Nitrogen fixation by the thermophilic green sulfur bacterium Chlorobium tepidum. J Bacteriol 175: 474–478

    CAS  PubMed Central  PubMed  Google Scholar 

  • Warthmann R, Cypionka H, Pfennig N (1992) Photoproduction of hydrogen from acetate by syntrophic cocultures of green sulfur bacteria and sulfur-reducing bacteria. Arch Microbiol 157:343–348

    CAS  Google Scholar 

  • Witt D, Bergsteinbendan T, Stackebrandt E (1989) Nucleotide sequence of 16S ribosomal RNA and phylogenetic position of the green sulfur bacterium Clathrochloris sulfurica. Arch Microbiol 152:206–208

    CAS  PubMed  Google Scholar 

  • Yentsch CS (1962) Marine plankton. In: Lewin RA (ed) Physiology and biochemistry of algae. Academic, London, pp 771–797

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes F. Imhoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Imhoff, J.F. (2014). The Family Chlorobiaceae . In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38954-2_142

Download citation

Publish with us

Policies and ethics

Navigation