Rheological Properties of the Magmas Feeding the Campi Flegrei Caldera (Italy) and Their Influence on Mixing Processes

  • Chapter
  • First Online:
Campi Flegrei

Part of the book series: Active Volcanoes of the World ((AVOLCAN))

  • 652 Accesses

Abstract

This chapter reviews and discusses the main rheological and physical properties and models (viscosity and density) of the melts feeding the Campi Flegrei caldera volcanism. Viscosity and density control flow and diffusion, and thus multicomponent convection and chemical mobility in the magma chamber. These, in turn, are thought to constrain magma mixing processes in the system. Our main goal is to summarise and analyse mixing experiments using natural volcanic products of the caldera as starting material. The mixing experiments have been performed using different devices (Taylor-Couette and centrifuge). Results show how easily Campi Flegrei caldera melts may mix. They confirm that different chemical elements homogenise in the melt at differing rates, providing an innovative quantitative approach, the estimation of a new parameter for measuring multi-component diffusion in magmas: Relaxation of Concentration Variance or Concentration Variance Decay. This enables the measurement of mobility for all elements present in the melt simultaneously. Comparing experimental and natural data clearly confirm the unavoidability of mixing during the replenishment history of the caldera reservoir(s).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Andújar J, Scaillet B (2012) Relationships between pre-eruptive conditions and eruptive styles of phonolite–trachyte magmas. Lithos 152:122–131

    Article  Google Scholar 

  • Arienzo I, Civetta L, Heumann A, Wörner G, Orsi G (2009) Isotopic evidence for open system processes within the Campanian Ignimbrite magma chamber. Bull Volcanol 71:285–300

    Article  Google Scholar 

  • Arienzo I, Moretti R, Civetta L, Orsi G, Papale P (2010) The feeding system of Agnano-Monte Spina eruption (Campi Flegrei, Italy): dragging the past into the present activity and future scenarios. Chem Geol 270(1–4):135–147

    Article  Google Scholar 

  • Arienzo I, Mazzeo FC, Moretti R, Cavallo A, D’Antonio M (2016) Open-system magma evolution and fluid transfer at Campi Flegrei caldera (Southern Italy) during the past 5 ka as revealed by geochemical and isotopic data: the example of the Nisida eruption. Chem Geol 427:109–124

    Article  Google Scholar 

  • Bateman R (1995) The interplay between crystallization, replenishment and hybridisation in large felsic magma chambers. Earth-Sci Rev 39:91–106

    Article  Google Scholar 

  • Blake S, Ivey GN (1986) Density and viscosity gradients in zoned magma chambers, and their influence in withdraw dynamics. J Volcanol Geotherm Res 30:201–230

    Article  Google Scholar 

  • Campbell IH, Turner JS (1989) Fountains in magma chambers. J Petrol 30(4):885–923

    Article  Google Scholar 

  • Cannatelli C (2012) Understanding magma evolution at Campi Flegrei (Campania, Italy) volcanic complex using melt inclusions and phase equilibria. Miner Petrol 104:29–42. https://doi.org/10.1007/s00710-011-0182-6

    Article  Google Scholar 

  • Cannatelli C, Lima A, Bodnar RJ, De Vivo B, Webster JD, Fedele L (2007) Geochemistry of melt inclusions from the Fondo Riccio and Minopoli 1 eruptions at Campi Flegrei (Italy). Chem Geol 237:418–432

    Article  Google Scholar 

  • Caricchi L, Giordano D, Burlini L, Ulmer P, Romano C (2008) Rheological properties of magma from the 1538 eruption of Monte Nuovo (Phlegrean Fields, Italy): an experimental study. Chem Geol 256:158–171

    Article  Google Scholar 

  • Chiodini G, Caliro S, De Martino P, Avino R, Gerardi F (2012) Early signals of new volcanic unrest at Campi Flegrei caldera? Insights from geochemical data and physical simulations. Geology 10:943–946

    Article  Google Scholar 

  • Civetta L, Orsi G, Pappalardo L, Fisher RV, Heiken G, Ort M (1997) Geochemical zoning, mingling, eruptive dynamics and depositional processes, the Campanian Ignimbrite, Campi Flegrei Caldera, Italy. J Volcanol Geotherm Res 75:183–219

    Article  Google Scholar 

  • Courtial P, Dingwell DB (2005) Non-linear composition dependence of melt volume in the CaO-Al2O3-SiO2 system. Geochim Cosmochim Acta 59:3685–3695

    Article  Google Scholar 

  • D’Antonio M, Tonarini S, Arienzo I, Civetta L, Di Renzo, V (2007) Components and processes in the magma genesis of the Phlegrean volcanic district (southern Italy). In: Beccaluva L, Bianchini G, Wilson M (eds) Cenozoic volcanism in the Mediterranean area. Geol Soc Am Sp Paper 418:203–220

    Google Scholar 

  • D’Oriano C, Poggianti E, Bertagnini A, Cioni R, Landi P, Polacci M, Rosi M (2005) Changes in eruptive style during the A.D. 1538 Monte Nuovo eruption (Phlegrean Fields, Italy): the role of syn-eruptive crystallization. Bull Volcanol 67:601–621. https://doi.org/10.1007/s00445-004-0397-z

    Article  Google Scholar 

  • De Campos CP, Dingwell DB, Fehr KT (2004) Decoupled convection cells from mixing experiments with alkaline melts from Campi Flegrei. Chem Geol 213:227–251

    Article  Google Scholar 

  • De Campos CP, Dingwell DB, Fehr KT (2005) Double diffusive convection in alkaline silicate melts: first experimental results. Phys Chem Glasses-B 46(4):330–333

    Google Scholar 

  • De Campos CP, Dingwell DB, Perugini D, Civetta L, Fehr TK (2008) Heterogeneities in magma chambers: insights from the behaviour of major and minor elements during mixing experiments with natural alkaline melts. Chem Geol 256:131–145

    Article  Google Scholar 

  • De Campos CP, Perugini D, Ertel-Ingrisch W, Dingwell DB, Poli G (2011) Enhancement of magma mixing efficiency by chaotic dynamics: an experimental study. Contrib Mineral Petrol 161:863–881

    Article  Google Scholar 

  • de Vita S, Orsi G, Civetta L, Carandente A, D’Antonio M, Deino A, di Cesare T, Di Vito A, Fisher V, Isaia R, Marotta E, Necco A, Ort M, Pappalardo L, Piochi M, Southon J (1999) The Agnano-Monte Spina eruption (4100 BP) in the restless Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 91:269–301. https://doi.org/10.1016/S0377-0273(99)00039-6

    Article  Google Scholar 

  • Di Genova D, Romano C, Alletti M, Misiti V, Scarlato P (2014) The effect of CO2 and H2O on Etna and Fondo Riccio (Phlegrean Fields) liquid viscosity, glass transition temperature and heat capacity. Chem Geol 377:72–86. https://doi.org/10.1016/j.chemgeo.2014.04.001

    Article  Google Scholar 

  • Di Renzo V, Arienzo I, Civetta L, D’Antonio M, Tonarini S, Di Vito MA, Orsi G (2011) The magmatic feeding system of the Campi Flegrei caldera: architecture and temporal evolution. Chem Geol 281:227–241

    Article  Google Scholar 

  • Di Vito MA, Isaia R, Orsi G, Southon J, de Vita S, D’Antonio M, Pappalardo L, Piochi M (1999) Volcanic and deformational history of the Campi Flegrei caldera in the past 12 ka. J Volcanol Geotherm Res 91:221–246

    Article  Google Scholar 

  • Di Vito MA, Arienzo I, Braia G, Civetta L, D’Antonio M, Di Renzo V, Orsi G (2011) The Averno 2 fissure eruption: a recente small-size explosive event at Campi Flegrei Caldera (Italy). Bull Volcanol 73:295–320

    Google Scholar 

  • Di Vito MA, Acocella V, Aiello G, Barra D, Battaglia M, Carandente A, Del Gaudio C, de Vita S, Ricciardi G, Ricco C, Scandone R, Terrasi F (2016) Magma transfer at Campi Flegrei caldera (Italy) before the 1538 AD eruption. Sci Rep 6:32245. https://doi.org/10.1038/srep32245

    Article  Google Scholar 

  • Dingwell DB (1996) Volcanic dilemma: flow or blow? Science 273:1054–1055

    Article  Google Scholar 

  • Dingwell DB (2006) Transport properties of magmas: diffusion and rheology. Elements 2:281–286

    Article  Google Scholar 

  • Dingwell DB, Bagdassarov NS, Bussod GY, Webb SL (1993) Magma rheology. In: Luth RW (ed) Short course handbook on experiments at high pressure and applications to the earth’s mantle. Mineral Assoc Canada 21, pp 131–196

    Google Scholar 

  • Dingwell DB, Hess KU, Romano C (1998) Extremely fluid behavior of hydrous peralkaline rhyolites. Earth Planet Sci Lett 158:31–38

    Article  Google Scholar 

  • Fischer TP (2008) Fluxes of volatiles (H2O, CO2, N2, Cl, F) from arc volcanoes: Geochem J 42:21–38. https://doi.org/10.2343/geochemj.42.21

  • Fulcher GS (1925) Analysis of recent measurements of the viscosity of glasses. J Am Ceramic Soc 8(6):339–355. https://doi.org/10.1111/j.1151-2916.1925.tb16731.x

    Article  Google Scholar 

  • Furbish DJ (1997) Fluid physics in geology: an introduction to fluid motions on Earth’s surface and within its crust. Oxford Univ Press Inc., USA, p 476

    Book  Google Scholar 

  • Giaccio B, Haidas I, Isaia R, Deino A, Nomade S (2017) High-precision 14C and 40Ar/39Ar dating of the Campanian Ignimbrite (Y-5) reconciles the time-scales of climatic-cultural processes at 40 ka. Sci Rep 7:45940

    Article  Google Scholar 

  • Giordano D, Dingwell DB (2003) Non-Arrhenian multicomponent melt viscosity: a model. Earth Planet Sci Lett 208(3):337–349

    Article  Google Scholar 

  • Giordano D, Romano C, Papale P, Dingwell DB (2004) The viscosity of trachytes, and comparison with basalts, phonolites, and rhyolites. Chem Geol 213:49–61

    Article  Google Scholar 

  • Giordano D, Mangiacapra A, Potuzak M, Russell JK, Romano C, Dingwell DB, Di Muro A (2006) An expanded non-Arrhenian model for silicate melt viscosity: a treatment for metaluminous, peraluminous and peralkaline liquids. Chem Geol 229:42–56. https://doi.org/10.1016/j.chemgeo.2006.01.007

    Article  Google Scholar 

  • Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134

    Article  Google Scholar 

  • Giordano D, Ardia P, Romano C, Dingwell DB, Di Muro A, Schmidt MW, Mangiacapra A, Hess KU (2009) The rheological evolution of alkaline Vesuvius magmas and comparison with alkaline series from the Phlegrean Fields, Etna, Stromboli and Teide. Geochim Cosmochim Acta 73:6613–6630. https://doi.org/10.1016/j.gca.2009.07.033

    Article  Google Scholar 

  • Hess KU, Dingwell DB (1996) Viscosities of hydrous leucogranitic melts: a non-Arrhenian model. Am Mineral 81:1297–1300

    Google Scholar 

  • Hess KU, Dingwell DB, Rössler E (1996) Parameterization of viscosity temperature relationships of aluminosilicate melts. Chem Geol 128:155–163

    Article  Google Scholar 

  • Hui H, Zhang Y (2007) Toward a general viscosity equation for natural anhydrous and hydrous silicate melts. Geochim Cosmochim Acta 71:403–416

    Article  Google Scholar 

  • Huppert HE, Turner JS, Sparks RSJ (1982) Replenished magma chambers: effects of compositional zonation and input rates. Earth Planet Sc Let 57(2):345–357

    Google Scholar 

  • Isaia R, D’Antonio M, Dell’Erba F, Di Vito M, Orsi G (2004) The Astroni volcano: the only example of closely spaced eruptions in the same vent area during the recent history of the Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 133:171–192. https://doi.org/10.1016/S0377-0273(03)00397-4

    Article  Google Scholar 

  • Jellinek AM, Kerr RC, Griffiths RW (1999) Mixing and compositional stratification produced by natural convection: 1. Experiments and their applications to Earth’s core and mantle. J Geophys Res 104 (B4):7183–7201

    Google Scholar 

  • Knoche R, Dingwell DB, Webb SL (1995) Leucogranitic and pegmatitic melt densities: partial molar volumes for SiO2, Al2O3, Na2O, K2O, Rb2O, CsO, Li2O, BaO, SrO, CaO, MgO, TiO2, B2O3, P2O5, F2O–1, Ta2O5, Nb2O5, and WO3. Geochim Cosmochim Acta 59:4645–4652

    Article  Google Scholar 

  • Lange RA (1994) The effect of H2O, CO2 and F on the density and viscosity of silicate melts. In: Carroll M, Holloway JR (eds) Volatiles in magmas. Rev Mineral vol 30, Mineral Soc Am, pp 331–169

    Google Scholar 

  • Lange RA, Carmichael ISE (1987) Densities of Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–TiO2–SiO2 liquids: new measurements and derived partial molar properties. Geochim Cosmochim Acta 51:2931–2946

    Article  Google Scholar 

  • Laumonier M, Scaillet B, Pichavant M, Champallier R, Andujar J, Arbaret L (2014) On the conditions of magma mixing and its bearing on andesite production in the crust. Nat Commun 5. https://doi.org/10.1038/ncomms6607

  • Liang Y, Richter FM, Watson EB (1996) Diffusion in silicate melts: II. Multicomponent chemical diffusion in CaO–Al2O3–SiO2 at 1500 °C and 1 GPa. Geochim Cosmochim Acta 60:5021–5036

    Article  Google Scholar 

  • Longo A, Vassalli M, Papale P, Barsanti M (2006) Numerical simulation of convection and mixing in magma chambers replenished with CO2-rich magma. Geophys Res Lett 33(21). https://doi.org/10.1029/2006GL027760

  • Longo A, Papale P, Vassalli M, Saccorotti G, Montagna CP, Cassioli A, Giudice S, Boschi E (2012) Magma convection and mixing dynamics as a source of ultra-long-period oscillations. Bull Volcanol 74(4):873–880. https://doi.org/10.1007/s00445-011

    Article  Google Scholar 

  • Mangiacapra A, Moretti R, Rutherford M, Civetta L, Orsi G, Papale P (2008) The deep magmatic system of the Campi Flegrei caldera (Italy). Geophys Res Lett 35:L21304. https://doi.org/10.1029/2008GL035550

  • Marianelli P, Sbrana A, Proto M (2006) Magma chamber of the Campi Flegrei supervolcano at the time of the eruption of the Campanian Ignimbrite. Geology 34(11):937–940

    Google Scholar 

  • Martin D, Griffiths RW, Campbell IH (1987) Compositional and thermal convection in magma chambers. Contrib Mineral Petrol 96:465–475

    Article  Google Scholar 

  • Misiti V, Freda C, Taddeucci J, Romano C, Scarlato P, Longo A, Papale P, Poe BT (2006) The effect of H2O on the viscosity of K-trachytic melts at magmatic temperatures. Chem Geol 235:124–137

    Article  Google Scholar 

  • Misiti V, Vetere F, Freda C, Scarlato P, Behrens H, Mangiacapra A, Dingwell DB (2011) A general viscosity model of Campi Flegrei (Italy) melts. Chem Geol 290(1–2):50–59

    Article  Google Scholar 

  • Montagna CP, Papale P, Longo A (2015) Timescales of mingling in shallow magmatic reservoir. In: Caricchi L, Blundy JD (eds) Chemical, physical and temporal evolution of volcanic systems. Geol Soc London, UK, Spec Publ 422, pp 131–140

    Google Scholar 

  • Moretti R, Arienzo I, Civetta L, Orsi G, Papale P (2013) Multiple magma degassing sources at an explosive volcano. Earth Planet Sci Lett 367:95–104

    Article  Google Scholar 

  • Moretti R, Arienzo I, Di Renzo V, Orsi G, Arzilli F, Brun F, D’Antonio M, Mancini L, Deloule E (2019) Volatile segregation and generation of highly vesiculated explosive magmas by volatile-melt fining processes: the case of the Campanian Ignimbrite eruption. Chem Geol 503:1–14

    Article  Google Scholar 

  • Morgavi D, Perugini D, De Campos CP, Ertl-Ingrisch W, Dingwell DB (2013a) Time evolution of chemical exchanges during mixing of rhyolitic and basaltic melts. Contrib Mineral Petrol 166(2):615–638

    Article  Google Scholar 

  • Morgavi D, Perugini D, De Campos CP, Ertl-Ingrisch W, Dingwell DB (2013b) Morphochemistry of patterns produced by mixing of rhyolitic and basaltic melts. J Volcanol Geotherm Res 253:87–96

    Article  Google Scholar 

  • Morgavi D, Perugini D, De Campos CP, Ertl-Ingrisch W, Lavallee Y, Morgan L, Dingwell DB (2013c) Interactions between rhyolitic and basaltic melts unraveled by chaotic magma mixing experiments. Chem Geol 346:119–212

    Article  Google Scholar 

  • Morgavi D, Arienzo I, Montagna C, Perugini D, Dingwell DB (2017) Magma mixing: history and dynamics of an eruption trigger. In: Gottsmann J, Neuberg J, Scheu B (eds) Volcanic unrest, from science to society. Advances in volcanology, pp 123–137. ISSN: 2364-3277, ISSN: 2364-3285 (electronic). ISBN: 978-3-319-58411-9 ISBN: 978-3-319-58412-6 (eBook). https://doi.org/10.1007/978-3-319-58412-6

  • Mungall JE, Dingwell DB, Chaussidon M (1999) Chemical diffusivities of 18 trace elements in granitoid melts. Geochim Cosmochim Acta 63:2599–2610

    Article  Google Scholar 

  • Mysen BO (1988) Structure and properties of silicate melts. Elsevier, Amsterdam, The Netherlands, pp 354

    Google Scholar 

  • Ottino JM (1989) The kinematics of mixing: stretching. Cambridge University Press, Chaos and Transport

    Google Scholar 

  • Papale P (2005) Determination of total H2O and CO2 budgets in evolving magmas from melt inclusion data. J Geophys Res 110:B03208. https://doi.org/10.1029/2004JB003033

    Article  Google Scholar 

  • Papale P, Neri A, Macedonio G (1998) The role of magma composition and water content in explosive eruption: I. Conduit ascent dynamics. J Volcanol Geotherm Res 87:75–93

    Article  Google Scholar 

  • Pappalardo L, Piochi M, D’Antonio M, Civetta L, Petrini R (2002) Evidence for multi-stage magmatic evolution during the past 60 kyr at Campi Flegrei (Italy) deduced from Sr, Nd and Pb isotope data. J Petrol 43(8):1415–1434

    Article  Google Scholar 

  • Persikov ES (1991) Viscosity of magmatic liquids: experiment, generalized patterns. A model for the calculation and prediction. In: Perchuk L, Kushiro I (eds) Adv Physic Geochem 9. Springer-Verlag, NY, pp 1–40

    Google Scholar 

  • Perugini D, Ventura G, Petrelli M, Poli G (2004) Kinematic significance of morphological structures generated by mixing of magmas: a case study from Salina Island (Southern Italy). Earth Planet Sci Lett 222:1051–1066

    Article  Google Scholar 

  • Perugini D, Petrelli M, Poli G (2006) Diffusive fractionation of trace elements by chaotic mixing of magmas. Earth Planet Sci Lett 24:669–680

    Article  Google Scholar 

  • Perugini D, De Campos CP, Dingwell DB, Petrelli M, Poli G (2008) Trace element mobility during magma mixing: preliminary experimental results. Chem Geol 256:145–156. https://doi.org/10.1016/j.chemgeo.2008.06.032

    Article  Google Scholar 

  • Perugini D, Petrelli M, Poli G, De Campos CP, Dingwell DB (2010) Time-scales of recent Phlegrean Fields eruptions inferred by the application of the ‘diffusive fractionation’ model of trace elements. Bull Volcanol 72:431–447. https://doi.org/10.1007/s00445-009-0329-z

    Article  Google Scholar 

  • Perugini D, De Campos CP, Ertel-Ingrisch W, Dingwell DB (2012) The space and time complexity of chaotic mixing of silicate melts: Implications for igneous petrology. Lithos 155:326–340

    Article  Google Scholar 

  • Perugini D, De Campos CP, Dingwell DB, Dorfman A (2013) Relaxation of concentration variance: A new tool to measure chemical element mobility during mixing of magmas. Chem Geol 335:8–23

    Article  Google Scholar 

  • Perugini D, De Campos CP, Petrelli M, Dingwell DB (2015) Concentration variance decay during magma mixing: a volcanic chronometer. Sci Rep 5:14225. https://doi.org/10.1038/srep14225

    Article  Google Scholar 

  • Peruzzo E, Barsanti M, Flandoli F, Papale P (2010) The stochastic quantization method and its application to the numerical simulation of volcanic conduit dynamics under random conditions. Solid Earth 1:49–59. https://www.solid-earth.net/1/49/2010/doi:10.5194/se-1-49-2010

  • Petrelli M, Perugini D, Poli G (2011) Transition to chaos and implications for time-scales of magma hybridization during mixing processes in magma chambers. Lithos 125(1–2):211–220. https://doi.org/10.1016/j.lithos.2011.02.007

    Article  Google Scholar 

  • Richet P, Bottinga Y (1995) Rheology and configurational entropy of silicate liquids. In: Stebbins JF, McMillan PF, Dingwell DB (eds) Structure, dynamics and properties of Silicate melts. Min Soc Am Rev Mineral 32, pp 67–93

    Google Scholar 

  • Rolandi G, Bellucci F, Heizler MT, Belkin HE, De Vivo B (2003) Tectonic controls on the genesis of ignimbrites from the Campanian volcanic zone, Southern Italy. Mineral Petrol 79:3–31

    Article  Google Scholar 

  • Romano C, Giordano D, Papale P, Mincione V, Dingwell DB, Rosi M (2003) The dry and hydrous viscosities of alkaline melts from Vesuvius and Phlegrean Fields. Chem Geol 202:23–38

    Article  Google Scholar 

  • Rössler E, Hess KU, Novikov VN (1998) Universal representation of viscosity in glass forming liquids. J Non-Cryst Solids 223:207–222

    Article  Google Scholar 

  • Russell JK, Giordano D (2005) A model for silicate melt viscosity in the system CaMgSi2O6–CaAl2Si2O8–NaAlSi3O8. Geochim Cosmochim Acta 69:5333–5349

    Article  Google Scholar 

  • Signorelli S, Vaggelli G, Francalanci L, Rosi M (1999) Origin of magmas feeding the Plinian phase of the Campanian Ignimbrite eruption, Phlegrean Fields (Italy): constraints based on matrix-glass and glass-inclusion compositions. J Volcanol Geotherm Res 91:199–220

    Article  Google Scholar 

  • Smith VC, Isaia R, Pearce NJG (2011) Tephrostratigraphy and glass compositions of post-15 kyr Campi Flegrei eruptions: implications for eruption history and chronostratigraphic markers. Quat Sci Rev 30:3638–3660

    Article  Google Scholar 

  • Snyder D, Tait S (1996) Magma mixing by convective entrainment. Nature 379:529–531

    Article  Google Scholar 

  • Sparks RSJ (2004) Dynamics of magma degassing. Volcanic degassing. Geol Soc Lond Sp Publ 213:5–22

    Article  Google Scholar 

  • Sparks RSJ, Marshall IA (1986) Thermal and mechanical constrains on mixing between mafic and silicic magmas. J Volcanol Geotherm Res 29:99–124

    Article  Google Scholar 

  • Spera FJ, Schmidt JS, Bohrson BGA (2016) Dynamics and thermodynamics of magma mixing: Insights from a simple exploratory model. Am Mineral, Sp Col: Perspect Origins Evol Crustal Magmas 101:627–643

    Article  Google Scholar 

  • Tammann G, Hesse W (1926) Die Abhängigkeit der viscosität von der temperatur bie unterkühlten Flüssigkeiten. Zeitsch Anorgan Allg Chem 156(1):245–257. https://doi.org/10.1002/zaac.19261560121

    Article  Google Scholar 

  • Tonarini S, D’Antonio M, Di Vito MA, Orsi G, Carandente A (2009) Geochemical and B-Sr-Nd isotopic evidence for mingling and mixing processes in the magmatic system that fed the Astroni volcano (4.1-3.8 ka) within the Campi Flegrei caldera (Southern Italy). Lithos 107:135–151

    Article  Google Scholar 

  • Toplis MJ (1998) Energy barriers to viscous flow and the prediction of glass transition temperatures of molten silicates. Am Mineral 83:480–490

    Article  Google Scholar 

  • Vogel DH (1921) Das Temperaturabhaengigkeitsgesetz der Viskositaet von Fluessigkeiten. Physik Zeitsch 22:645

    Google Scholar 

  • Vona A, Romano C, Giordano D, Russell JK (2013) The multiphase rheology of magmas from Monte Nuovo (Campi Flegrei, Italy). Chem Geol 346:213–227

    Article  Google Scholar 

  • Whittington A, Richet P, Linard Y, Holtz F (2001) The viscosity of hydrous phonolites and trachytes. Chem Geol 174:209–223

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the DFG-Project DI 431/31 and INGV Campi Flegrei UNREST project (Italy). Perugini (DP) and Dingwell (DBD) acknowledge research grants from the University of Perugia (DP), the MIUR-PRIN2010TT22SC_004 (DP) Humboldt Foundation (Germany) that awarded DP a Humboldt Fellowship at the Ludwig Maximilians University (Munich, Germany), and a Research Professorship (LMUexcellent) of the Bundesexellenzinitiative as well as ERC Advanced Grant 247076 “EVOKES” (DBD). Constructive comments by the editors, Daniele Giordano and anonymous reviewers are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina P. De Campos .

Editor information

Editors and Affiliations

Appendix 1 Viscosity Model for Latitic and Shoshonitic Compositions

Appendix 1 Viscosity Model for Latitic and Shoshonitic Compositions

Dry and hydrous viscosity for latitic and shoshonitic compositions from the CFc have been studied by Giordano et al. (2006, 2009), Misiti et al. (2011) and Di Genova et al. (2014). Misiti et al. (2011) selected two natural scoria samples from the pyroclastic sequences of the FR (latitic) and MIN2 (shoshonitic) eruptions. In contrast to other studies (Romano et al. 2003; Giordano et al. 2004; Misiti et al. 2006), instead of selecting the natural glassy phase, the bulk rock was remelted in air and quenched to glass (see Table 2). Parts of these then hydrated for measurements with the “falling sphere” and the micropenetration-techniques. The correspondent dry melts were further measured by the concentric cylinder and the micropenetration methods (see Table 4). A modified VFT-equation (Eq. 6) has been used in the description of the viscosity model:

$$\log \eta = a + \frac{b}{{\left( {T - c} \right)}} + \frac{d}{{\left( {T - e} \right)}}.\exp \left( {g.\frac{w}{T}} \right)$$
(6)

where η(eta) is the viscosity in Pa*s, T is the absolute temperature, w is the amount of water in wt% and a, b, c, d, e and g being fit parameters (there is no “f” fit parameter). Note: Confusingly the fitted parameter reported in the Misiti et al. (2011) paper have been fitted with “-a” instead of the “a” parameter. In Table 4 the “a” parameter is therefore the negative “a” parameter of Misiti et al. (2011). The viscosity data set for latitic melts of the FR eruption is rather limited in compositional space. At high temperatures there are only two data points for hydrous melts, with very similar water contents of 2.84 and 3.28 wt%, respectively. At lower temperatures the data covers restricted water contents up to a maximum of 1.2 wt%. The standard deviation of the model fit (0.35) is the worst for a specific model. Thus, the fit model could be further improved. A more recent viscosity model for water-and CO2-bearing CFc latite has been obtained by Di Genova et al. (2014). These authors parameterised the measured viscosities of the FR magma with different amounts of CO2 and H2O using the equation reported in Di Genova et al. (2014), who modelled the viscosity by using the VFT equation log η = A + B / (T − C)] (Eq. 1) (Vogel 1921; Fulcher 1925; Tammann and Hesse 1926) with 4 fit parameters as follows:

$$\log \eta = A_{VFT} + \frac{{b1 + b2.\log \left( {1 + H_{2} O} \right)}}{{T\left( K \right) - C1 + C2.\log \left( {1 + H_{2} O} \right)}}$$
(7)

where η is the viscosity in Pa*s, T is the absolute temperature, H2O is the water concentration in wt%, AVFT is the pre-exponential factor, b1 and b2 are related to the pseudo-activation energy, c1 and c2 are related to the Vogel temperature.

The viscosity data has been fitted by assuming that AVFT is a constant and independent of composition (e.g., Richet and Bottinga 1995; Whittington et al. 2001). The value of the preexponential parameter AVFT is taken as −4.55 Pa*s (Giordano et al. 2009). Fitted values and standard deviations of the b and c parameters are on Table 4. Equation 7 reproduces the experimental data from Di Genova et al. (2014) with a standard error of estimation of 0.57 log units.

The viscosity dataset for a shoshonitic melt feeding the MIN2 eruption is quantitatively not sufficient. Only 12 data points cover the low temperature region with maximum water content of 2.43 wt%. In the high temperature region two data points, for relatively similar water contents (2.35 and 3.30 wt%), constrained the dataset.

Both models predict the unlikely behaviour of a distinct difference of a dry curve and a curve where all hydrous melts collapse. It remains unclear if this result is due to the sparse compositional range (water content) covered, or to the modified VFT-equation, or to both. Also, the GRD and HZ general viscosity models cannot solve this problem. Up to this point it seems that for hydrous melts of shoshonitic composition there is no sufficient dataset range and a pertinent model available yet. Thus, both dataset and fit models still need improvements.

The numerical consequences of fitting viscosity-temperature datasets using natural samples from CF to non-Arrhenian rheological models have been explored by several authors (e.g., Giordano and Dingwell 2003; Russell and Giordano 2005; Giordano et al. 2006, 2008, 2009; Misiti et al. 2011; Di Genova et al. 2014). This kind of analysis shows that strong correlations of model parameters (e.g., ATVF, BTVF, CTVF) are inherent to non-Arrhenian models (Giordano et al. 2009). Uncertainties on model parameters and covariances between parameters are strongly affected by the quality and distribution of the experimental data, as well as the degree of non-Arrhenian behaviour as pointed out by Giordano et al. (2009).

The task of modelling viscosity in natural systems is therefore the product of a joint effort of decreasing uncertainties, through thorough experimental measurements of a wide compositional range, with different techniques, and improving mathematical parameterisation. This way, step by step, we are getting closer to the natural system, towards a best-fitting model.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Campos, C.P., Hess, KU., Perugini, D., Dingwell, D.B. (2022). Rheological Properties of the Magmas Feeding the Campi Flegrei Caldera (Italy) and Their Influence on Mixing Processes. In: Orsi, G., D'Antonio, M., Civetta, L. (eds) Campi Flegrei. Active Volcanoes of the World. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37060-1_6

Download citation

Publish with us

Policies and ethics

Navigation