LOV Proteins Photobiophysics

  • Living reference work entry
  • First Online:
Encyclopedia of Biophysics
  • 37 Accesses

Synonyms

FAD = Flavin adenine dinucleotide; FMN = Flavin mononucleotide = riboflavin 5′-phosphate; LOV (light, oxygen, voltage) domains: blue light sensing units of ca. 110 aa; LOV390 = FMN(C4a)-Cys adduct, the product of LOV domain photochemistry; LOV450 = dark-adapted state of a LOV domain; Riboflavin = 7,8-Dimethyl-10-(1-deoxy-d-ribitol-1-yl)isoalloxazine

Introduction

LOV proteins with UVA/blue light (BL) sensitivity are photoreceptors employing LOV (light, oxygen, voltage) domains as photosensory modules linked to a large variety of effector functions in plants, fungi, bacteria, and archaea (Glantz et al. 2016; Losi and Gärtner 2017). LOV domains belong to the PAS (PerArntSim) superfamily (Gu et al. 2000) and present a characteristic α/β fold where the secondary structure elements are named Aβ,Bβ,Cα,Dα,Eα,Fα,Gβ,Hβ, and Iβ, starting from the N-terminus (Zoltowski and Gardner 2011). They bear a fully oxidized riboflavin, flavin mononucleotide (FMN), or flavin adenine dinucleotide...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Buckley AM, Petersen J, Roe AJ et al (2015) LOV-based reporters for fluorescence imaging. Curr Opin Chem Biol 27:39–45

    CAS  PubMed  Google Scholar 

  • Chang X-P, Gao Y-J, Fang W-H, et al (2017, in press) Quantum mechanics/molecular mechanics study on the photoreactions of dark- and light-adapted states of a blue-light YtvA LOV photoreceptor. Angew Chemie Int Ed. https://doi.org/10.1002/anie.201703487

  • Choi S, Nakasone Y, Hellingwerf KJ, Terazima M (2016) Photochemical reactions of the LOV and LOV-linker domains of the blue light sensor protein YtvA. Biochemistry 55:3107–3115

    CAS  PubMed  Google Scholar 

  • Conrad KS, Manahan CC, Crane BR (2014) Photochemistry of flavoprotein light sensors. Nat Chem Biol 10:801–809

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dasgupta A, Fuller KK, Dunlap JC, Loros JJ (2016) Seeing the world differently: variability in the photosensory mechanisms of two model fungi. Environ Microbiol 18:5–20

    PubMed  Google Scholar 

  • Drepper T, Eggert T, Circolone F et al (2007) Reporter proteins for in vivo fluorescence without oxygen. Nat Biotechnol 25:443–445

    CAS  PubMed  Google Scholar 

  • El-Arab KK, Pudasaini A, Zoltowski BD et al (2015) Short LOV proteins in methylocystis reveal insight into LOV domain photocycle mechanisms. PLoS One 10:e0124874

    PubMed  PubMed Central  Google Scholar 

  • Endo M, Ozawa T (2017) Strategies for development of optogenetic systems and their applications. J Photochem Photobiol C: Photochem Rev 30:10–23

    CAS  Google Scholar 

  • Engelhard C, Diensthuber RP, Möglich A, Bittl R (2017) Blue-light reception through quaternary transitions. Sci Rep 7:1385

    PubMed  PubMed Central  Google Scholar 

  • Freddolino PL, Gardner KH, Schulten K (2013) Signaling mechanisms of LOV domains: new insights from molecular dynamics studies. Photochem Photobiol Sci 12:1158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ganguly A, Thiel W, Crane BR (2017) Glutamine amide flip elicits long distance allosteric responses in the LOV protein vivid. J Am Chem Soc 139:2972–2980

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glantz ST, Carpenter EJ, Melkonian M et al (2016)Functional and topological diversity of LOV domain photoreceptors. Proc Natl Acad Sci USA 113:E1442–E1451

    CAS  PubMed  Google Scholar 

  • Gu Y-Z, Hogenesch JB, Bradfield CA (2000) The PAS superfamily: sensors of environmental and developmental signals. Annu Rev Pharmacol Toxicol 40:519–561

    CAS  PubMed  Google Scholar 

  • Guex N, Peitsch MC, Walker J et al (1997) SWISS-MODEL and the Swiss-Pdb viewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    CAS  PubMed  Google Scholar 

  • Kennis JTM, van Stokkum IHM, Crosson S et al (2004) The LOV2 domain of phototropin: a reversible photochromic switch. J Am Chem Soc 126:4512–4513

    CAS  PubMed  Google Scholar 

  • Kerruth S, Langner P, Raffelberg S et al (2017) Characterization of the blue-light-activated adenylyl cyclase mPAC by flash photolysis and FTIR spectroscopy. Photochem Photobiol 93:857–864

    CAS  PubMed  Google Scholar 

  • Liu Q, Tucker CL (2017) Engineering genetically-encoded tools for optogenetic control of protein activity. Curr Opin Chem Biol 40:17–23

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lokhandwala J, de la Silverman Y, Vega RI, Hopkins HC et al (2016) A native threonine coordinates ordered water to tune light-oxygen-voltage (LOV) domain photocycle kinetics and osmotic stress signaling in trichoderma reesei ENVOY. J Biol Chem 291:14839–14850

    CAS  PubMed  PubMed Central  Google Scholar 

  • Losi A (2007) Flavin-based blue-light photosensors: a photobiophysics update. Photochem Photobiol 83:1283–1300

    CAS  PubMed  Google Scholar 

  • Losi A, Gärtner W (2017) Solving blue light riddles: new lessons from flavin-binding LOV photoreceptors. Photochem Photobiol 93:141–158

    CAS  PubMed  Google Scholar 

  • Losi A, Gärtner W, Raffelberg S et al (2013) A photochromic bacterial photoreceptor with potential for super-resolution microscopy. Photochem Photobiol Sci 12:231–235

    CAS  PubMed  Google Scholar 

  • Magerl K, Stambolic I, Dick B et al (2017) Switching from adduct formation to electron transfer in a light–oxygen–voltage domain containing the reactive cysteine. Phys Chem Chem Phys 19:10808–10819

    CAS  PubMed  Google Scholar 

  • Nash AI, McNulty R, Shillito ME et al (2011) Structural basis of photosensitivity in a bacterial light-oxygen-voltage/helix-turn-helix (LOV-HTH) DNA-binding protein. Proc Natl Acad Sci USA 108:9449–9454

    CAS  PubMed  Google Scholar 

  • Pennacchietti F, Abbruzzetti S, Losi A et al (2014) The dark recovery rate in the photocycle of the bacterial photoreceptor YtvA is affected by the cellular environment and by hydration. PLoS One 9:e107489

    PubMed  PubMed Central  Google Scholar 

  • Petersen J, Inoue S-I, Kelly SM et al (2017) Functional characterization of a constitutively active kinase variant of Arabidopsis phototropin 1. J Biol Chem 292:13843–13852

    CAS  PubMed  PubMed Central  Google Scholar 

  • Potzkei J, Kunze M, Drepper T et al (2012) Real-time determination of intracellular oxygen in bacteria using a genetically encoded FRET-based biosensor. BMC Biol 10:28

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pudasaini A, El-Arab KK, Zoltowski BD (2015) LOV-based optogenetic devices: light-driven modules to impart photoregulated control of cellular signaling. Front Mol Biosci 2:18

    PubMed  PubMed Central  Google Scholar 

  • Pudasaini A, Shim JS, Song YH et al (2017) Kinetics of the LOV domain of ZEITLUPE determine its circadian function in Arabidopsis. elife 6:e21646

    PubMed  PubMed Central  Google Scholar 

  • Raffelberg S, Mansurova M, Gärtner W, Losi A (2011) Modulation of the photocycle of a LOV domain photoreceptor by the hydrogen-bonding network. J Am Chem Soc 133:5346–5356

    CAS  PubMed  Google Scholar 

  • Ravikumar Y, Nadarajan SP, Lee C-S et al (2015) A new-generation fluorescent-based metal sensor – iLOV protein. J Microbiol Biotechnol 25:503–510

    CAS  PubMed  Google Scholar 

  • Repina NA, Rosenbloom A, Mukherjee A et al (2017) At light speed: advances in optogenetic systems for regulating cell signaling and behavior. Annu Rev Chem Biomol Eng 8:13–39

    PubMed  PubMed Central  Google Scholar 

  • Rupprecht C, Wingen M, Potzkei J, et al (2017) A novel FbFP-based biosensor toolbox for sensitive in vivo determination of intracellular pH. J Biotechnol 258:25–32. https://doi.org/10.1016/j.jbiotec.2017.05.006

  • Salomon M, Christie JM, Knieb E et al (2000) Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin. Biochemistry 39:9401–9410

    CAS  Google Scholar 

  • Shcherbakova DM, Shemetov AA, Kaberniuk AA, Verkhusha VV (2015) Natural photoreceptors as a source of fluorescent proteins, biosensors, and optogenetic tools. Annu Rev Biochem 84:519–550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simon J, Losi A, Zhao K-H, Gärtner W (2017) FRET in a synthetic flavin- and bilin-binding protein. Photochem Photobiol 93:1057–1062

    CAS  PubMed  Google Scholar 

  • Song S-H, Madsen D, van der Steen JB et al (2013) Primary photochemistry of the dark- and light-adapted states of the YtvA protein from bacillus subtilis. Biochemistry 52:7951–7963

    CAS  PubMed  Google Scholar 

  • Souslova EA, Mironova KE, Deyev SM (2017) Applications of genetically encoded photosensitizer miniSOG: from correlative light electron microscopy to immunophotosensitizing. J Biophotonics 10:338–352

    CAS  PubMed  Google Scholar 

  • Takeda K, Nakasone Y, Zikihara K et al (2013) Dynamics of the amino-terminal and carboxyl-terminal helices of arabidopsis phototropin 1 LOV2 studied by the transient grating. J Phys Chem B 117:15606–15613

    CAS  PubMed  Google Scholar 

  • Wingen M, Potzkei J, Endres S et al (2014) The photophysics of LOV-based fluorescent proteins – new tools for cell biology. Photochem Photobiol Sci 13:875–883

    CAS  PubMed  Google Scholar 

  • Wingen M, Jaeger K-E, Gensch T, Drepper T (2017) Novel thermostable flavin-binding fluorescent proteins from thermophilic organisms. Photochem Photobiol 93:849–856

    CAS  PubMed  Google Scholar 

  • Zayner JP, Sosnick TR (2014) Factors that control the chemistry of the LOV domain photocycle. PLoS One 9:e87074

    PubMed  PubMed Central  Google Scholar 

  • Ziegler T, Möglich A (2015) Photoreceptor engineering. Front Mol Biosci 2:30

    PubMed  PubMed Central  Google Scholar 

  • Zoltowski BD, Gardner KH (2011) Trip** the light fantastic: blue-light photoreceptors as examples of environmentally modulated protein−protein interactions. Biochemistry 50:4–16

    CAS  PubMed  Google Scholar 

  • Zoltowski B, Motta-Mena L, Gardner K (2013) Blue light-induced dimerization of a bacterial LOV–HTH DNA-binding protein. Biochemistry 52:6653–6661

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aba Losi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 European Biophysical Societies' Association (EBSA)

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Losi, A. (2020). LOV Proteins Photobiophysics. In: Roberts, G., Watts, A. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35943-9_800-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35943-9_800-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35943-9

  • Online ISBN: 978-3-642-35943-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation