Extracting Conflict-Free Information from Multi-labeled Trees

  • Conference paper
Algorithms in Bioinformatics (WABI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7534))

Included in the following conference series:

Abstract

A multi-labeled tree, or MUL-tree, is a phylogenetic tree where two or more leaves share a label, e.g., a species name. A MUL-tree can imply multiple conflicting phylogenetic relationships for the same set of taxa, but can also contain conflict-free information that is of interest and yet is not obvious. We define the information content of a MUL-tree T as the set of all conflict-free quartet topologies implied by T , and define the maximal reduced form of T as the smallest tree that can be obtained from T by pruning leaves and contracting edges while retaining the same information content. We show that any two MUL-trees with the same information content exhibit the same reduced form. This introduces an equivalence relation among MUL-trees with potential applications to comparing MUL-trees. We present an efficient algorithm to reduce a MUL-tree to its maximally reduced form and evaluate its performance on empirical datasets in terms of both quality of the reduced tree and the degree of data reduction achieved.

This work was supported in part by the National Science Foundation under grant DEB-0829674.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bansal, M., Burleigh, J.G., Eulenstein, O., Fernández-Baca, D.: Robinson-Foulds supertrees. Algorithms for Molecular Biology 5(1), 18 (2010)

    Article  Google Scholar 

  2. Baum, B.R.: Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees. Taxon 41(1), 3–10 (1992)

    Article  MathSciNet  Google Scholar 

  3. de Queiroz, A., Gatesy, J.: The supermatrix approach to systematics. Trends in Ecology & Evolution 22(1), 34–41 (2007)

    Article  Google Scholar 

  4. Deepak, A., Fernández-Baca, D., McMahon, M.: Extracting conflict-free information from multi-labeled trees (2012), http://arxiv.org/abs/1205.6359

  5. Fellows, M., Hallett, M., Stege, U.: Analogs & duals of the mast problem for sequences & trees. Journal of Algorithms 49(1), 192–216 (2003); 1998 European Symposium on Algorithms

    Article  MathSciNet  MATH  Google Scholar 

  6. Ganapathy, G., Goodson, B., Jansen, R., Le, H., Ramachandran, V., Warnow, T.: Pattern identification in biogeography. IEEE/ACM Trans. Comput. Biol. Bioinformatics 3, 334–346 (2006)

    Article  Google Scholar 

  7. Grundt, H., Popp, M., Brochmann, C., Oxelman, B.: Polyploid origins in a circumpolar complex in draba (brassicaceae) inferred from cloned nuclear dna sequences and fingerprints. Molecular Phylogenetics and Evolution 32(3), 695–710 (2004)

    Article  Google Scholar 

  8. Huber, K., Lott, M., Moulton, V., Spillner, A.: The complexity of deriving multi-labeled trees from bipartitions. Journal of Computational Biology 15(6), 639–651 (2008)

    Article  MathSciNet  Google Scholar 

  9. Huber, K., Moulton, V.: Phylogenetic networks from multi-labelled trees. Journal of Mathematical Biology 52, 613–632 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Huber, K., Spillner, A., Suchecki, R., Moulton, V.: Metrics on multilabeled trees: Interrelationships and diameter bounds. IEEE/ACM Transactions on Computational Biology and Bioinformatics 8(4), 1029–1040 (2011)

    Article  Google Scholar 

  11. Johnson, K.P., Adams, R.J., Page, R.D.M., Clayton, D.H.: When do parasites fail to speciate in response to host speciation? Syst. Biol. 52, 37–47 (2003)

    Article  Google Scholar 

  12. Lott, M., Spillner, A., Huber, K., Petri, A., Oxelman, B., Moulton, V.: Inferring polyploid phylogenies from multiply-labeled gene trees. BMC Evolutionary Biology 9(1), 216 (2009)

    Article  Google Scholar 

  13. Marcet-Houben, M., Gabaldón, T.: Treeko: a duplication-aware algorithm for the comparison of phylogenetic trees. Nucleic Acids Research 39, e66 (2011)

    Article  Google Scholar 

  14. Popp, M., Oxelman, B.: Inferring the history of the polyploid silene aegaea (caryophyllaceae) using plastid and homoeologous nuclear dna sequences. Molecular Phylogenetics and Evolution 20(3), 474–481 (2001)

    Article  Google Scholar 

  15. Puigbò, P., Garcia-Vallvé, S., McInerney, J.: Topd/fmts: a new software to compare phylogenetic trees. Bioinformatics 23(12), 1556 (2007)

    Article  Google Scholar 

  16. Ragan, M.: Phylogenetic inference based on matrix representation of trees. Molecular Phylogenetics and Evolution 1(1), 53–58 (1992)

    Article  Google Scholar 

  17. Rasmussen, M.D., Kellis, M.: Unified modeling of gene duplication, loss, and coalescence using a locus tree. Genome Research 22, 755–765 (2012)

    Article  Google Scholar 

  18. Sanderson, M., Boss, D., Chen, D., Cranston, K., Wehe, A.: The PhyLoTA browser: processing GenBank for molecular phylogenetics research. Systematic Biology 57(3), 335 (2008)

    Article  Google Scholar 

  19. Scornavacca, C., Berry, V., Ranwez, V.: Building species trees from larger parts of phylogenomic databases. Information and Computation 209(3), 590–605 (2011); Special Issue: Dediu, A.H., Ionescu, A.M., Martín-Vide, C. (eds.): LATA 2009. LNCS, vol. 5457. Springer, Heidelberg (2009)

    Google Scholar 

  20. Semple, C., Steel, M.: Phylogenetics. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  21. Steel, M.: The complexity of reconstructing trees from qualitative characters and subtrees. Journal of Classification 9(1), 91–116 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Swenson, M., Suri, R., Linder, C., Warnow, T.: Superfine: fast and accurate supertree estimation. Systematic Biology 61(2), 214–227 (2012)

    Article  Google Scholar 

  23. Wiens, J.J., Reeder, T.W.: Combining data sets with different numbers of taxa for phylogenetic analysis. Systematic Biology 44(4), 548–558 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deepak, A., Fernández-Baca, D., McMahon, M.M. (2012). Extracting Conflict-Free Information from Multi-labeled Trees. In: Raphael, B., Tang, J. (eds) Algorithms in Bioinformatics. WABI 2012. Lecture Notes in Computer Science(), vol 7534. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33122-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33122-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33121-3

  • Online ISBN: 978-3-642-33122-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation