Methods to Isolate and Identify New Plant Signaling Peptides

  • Chapter
  • First Online:
Plant Signaling Peptides

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 16))

Abstract

Peptides play a key role in plant development and intercellular communication. A variety of novel peptides and peptidic compounds have been isolated over the last few decades. This chapter examines the various methods used to isolate and identify new peptides and peptidic compounds from plants, and provides an overview of these methods. The principles involved in extraction and methods commonly used for separation, isolation, and structural elucidation are summarized. Methods discussed include high-performance liquid chromatography in both normal and reversed phases, ion-exchange chromatography, size-exclusion chromatography, affinity chromatography, hydrophilic interaction liquid chromatography, hydrophobic interaction chromatography, multidimensional liquid chromatography, and various physical identification techniques such as mass spectrometry for determining molecular structures. The application of such techniques to identification of novel plant peptides is stressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Albuquerque CP, Smolka MB, Payne SH, Bafna V, Eng J, Zhou H (2008) A multidimensional chromatography technology for in-depth phosiphoproteome analysis. Mol Cell Proteomics 7(7):1389–1396

    PubMed  CAS  Google Scholar 

  • Alomirah HF, Alli I, Konishi Y (2000) Applications of mass spectrometry to food proteins and peptides. J Chromatogr A 893(1):1–21

    PubMed  CAS  Google Scholar 

  • Alpert AJ (1990) Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J Chromatogr 499:177–196

    PubMed  CAS  Google Scholar 

  • Azad MA, Sawa Y, Ishikawa T, Shibata H (2006) Purification and characterization of protein phosphatase 2A from petals of the tulip Tulipa gesnerina. J Biochem Mol Biol 39:671–676

    PubMed  CAS  Google Scholar 

  • Barth HG, Boyes BE, Jackson C (1994) Size exclusion chromatography. Anal Chem 66:595R–620R

    PubMed  CAS  Google Scholar 

  • Bergey DR, Howe GA, Ryan CA (1996) Polypeptide signaling for plant defensive genes exhibits analogies to defense signaling in animals. Proc Natl Acad Sci USA 93:12053–12058

    PubMed  CAS  Google Scholar 

  • Bhowmick R, Kumari NK, Jagannadham MV, Kayastha AM (2008) Purification and characterization of a novel protease from the latex of Pedilanthus tithymaloids. Protein Pept Lett 15:1009–1016

    PubMed  CAS  Google Scholar 

  • Bohlmann H, Apel K (1991) Thionins. Annu Rev Plant Physiol Plant Mol Biol 42:227–240

    CAS  Google Scholar 

  • Boutin JA, Ernould AP, Ferry G, Genton A, Alpert AJ (1992) Use of hydrophilic interaction chromatography for the study of tyrosine protein kinase specificity. J Chromatogr 583:137–143

    PubMed  CAS  Google Scholar 

  • Carpentier SC, Witters E, Laukens K, Deckers P, Swennen R, Panis B (2005) Preparation of protein extracts from recalcitrant plant tissues: an evaluation of different methods for two-dimensional gel electrophoresis analysis. Proteomics 5:2497–2507

    PubMed  CAS  Google Scholar 

  • Chan KC, Lucas DA, Hise D, Schaefer CF, **ao Z, Janini GM, Buetow KH, Issaq HJ, Veenstra TD, Conrads TP (2004) Analysis of the human serum proteome. Clin Proteomics 1:101–225

    Google Scholar 

  • Chanana V, Kaur KJ, Salunke DM (2004) Purification, identification and preliminary crystallographic characterization of a novel seed protein from Vigna unguiculata. Acta Crystallogr D Biol Crystallogr 60:2100–2103

    PubMed  Google Scholar 

  • Chen ZK, Fan CX, Ye YH, Yang L, Jiang Q, **ng QY (1998) Isolation and characterization of a group of oligopeptides related to oxidized glutathione from the root of Panax ginseng. J Pept Res 52:137–142

    PubMed  CAS  Google Scholar 

  • Cheng Y, Chen J, **ong YL (2010) Chromatographic separation and tandem MS identification of active peptides in potato protein hydrolysate that inhibit autoxidation of soybean oil-in-water emulsions. J Agric Food Chem 58:8825–8832

    PubMed  CAS  Google Scholar 

  • Claeson P, Goransson U, Johansson S, Luijendijk T, Bohlin L (1998) Fractionation protocol for the isolation of polypeptides from plant biomass. J Nat Prod 61:77–81

    PubMed  CAS  Google Scholar 

  • Cuatrecasas P, Wilchek M, Anfinsen CB (1968) Selective enzyme purification by affinity chromatography. Proc Natl Acad Sci USA 61:636–643

    PubMed  CAS  Google Scholar 

  • Das S, Mishra B, Gill K, Ashraf MS, Singh AK, Sinha M, Sharma S, Xess I, Dalal K, Singh TP, Dey S (2011) Isolation and characterization of novel protein with anti-fungal and anti-inflammatory properties from Aloe vera leaf gel. Int J Biol Macromol 48:38–43

    PubMed  CAS  Google Scholar 

  • Desimone M, Kruger M, Wessel T, Wehofsky M, Hoffmann R, Wagner E (2000) Purification and characterization of an aminopeptidase from the chloroplast stroma of barley leaves by chromatographic and electrophoretic methods. J Chromatogr B Biomed Sci Appl 737:285–293

    PubMed  CAS  Google Scholar 

  • Ding H, Zhang A, Wang J, Lu R, Zhang H, Zhang J, Jiang M (2009) Identity of an ABA-activated 46 kDa mitogen-activated protein kinase from Zea mays leaves: partial purification, identification and characterization. Planta 230:239–251

    PubMed  CAS  Google Scholar 

  • Dugo P, Cacciola F, Kumm T, Dugo G, Mondello L (2008) Comprehensive multidimensional liquid chromatography: theory and applications. J Chromatogr A 1184:353–368

    PubMed  CAS  Google Scholar 

  • Dunkel A, Koster J, Hofmann T (2007) Molecular and sensory characterization of gamma-glutamyl peptides as key contributors to the kokumi taste of edible beans (Phaseolus vulgaris L.). J Agric Food Chem 55:6712–6719

    PubMed  CAS  Google Scholar 

  • Evans CR, Jorgenson JW (2004) Multidimensional LC-LC and LC-CE for high-resolution separations of biological molecules. Anal Bioanal Chem 378:1952–1961

    PubMed  CAS  Google Scholar 

  • Fausnaugh JL, Regnier FE (1986) Solute and mobile phase contributions to retention in hydrophobic interaction chromatography of proteins. J Chromatogr 359:131–146

    PubMed  CAS  Google Scholar 

  • Fausnaugh JL, Kennedy LA, Regnier FE (1984) Comparison of hydrophobic-interaction and reversed-phase chromatography of proteins. J Chromatogr 317:141–155

    PubMed  CAS  Google Scholar 

  • Frei RW, Michel L, Santi W (1976) Post-column fluorescence derivatization of peptides. Problems and potential in high-performance liquid chromatography. J Chromatogr 126:665–677

    PubMed  CAS  Google Scholar 

  • Frolov A, Hoffmann R (2008) Analysis of amadori peptides enriched by boronic acid affinity chromatography. Ann N Y Acad Sci 1126:253–256

    PubMed  CAS  Google Scholar 

  • Garcia-Olmedo F, Molina A, Alamillo JM, Rodriguez-Palenzuela P (1998) Plant defense peptides. Biopolymers 47:479–491

    PubMed  CAS  Google Scholar 

  • Germain H, Chevalier E, Matton D (2006) Plant bioactive peptides: an expanding class of signaling molecules. Can J Bot 84:1–19

    CAS  Google Scholar 

  • Gilar M, Olivova P, Daly AE, Gebler JC (2005) Orthogonality of separation in two-dimensional liquid chromatography. Anal Chem 77(19):6426–6434

    PubMed  CAS  Google Scholar 

  • Gran L (1973) Oxytocic principles of Oldenlandia affinis. Lloydia 36(2):174–178

    PubMed  CAS  Google Scholar 

  • Granier F (1988) Extraction of plant proteins for two-dimensional electrophoresis. Electrophoresis 9:712–718

    PubMed  CAS  Google Scholar 

  • Gruber KA, Stein S, Brink L, Radhakrishnan A, Udenfriend S (1976) Fluorometric assay of vasopressin and oxytocin: a general approach to the assay of peptides in tissues. Proc Natl Acad Sci USA 73:1314–1318

    PubMed  CAS  Google Scholar 

  • Gustafson K, Sowder R II, Henderson LE, Parsons IC, Kashman Y, Cardellina JH II, McMahon JB, Buckheit RW Jr, Pannell LK, Boyd MR (1994) Circulins A and B: novel HIV-inhibitory macrocyclic peptides from the tropical tree Chassalia parvifolia. J Am Chem Soc 116:9337–9338

    CAS  Google Scholar 

  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999

    PubMed  CAS  Google Scholar 

  • Hanash S (2003) Disease proteomics. Nature 422:226–232

    PubMed  CAS  Google Scholar 

  • Hancock WS, Bishop CA, Prestidge RL, Harding DR, Hearn MT (1978) Reversed-phase, high-pressure liquid chromatography of peptides and proteins with ion-pairing reagents. Science 200:1168–1170

    PubMed  CAS  Google Scholar 

  • Henry RA (2002) Highly selective zirconia-based phases for HPLC applications. Am Lab 34:18–25

    CAS  Google Scholar 

  • Huang B, Ng TB, Fong WP, Wan CC, Yeung HW (1999) Isolation of a trypsin inhibitor with deletion of N-terminal pentapeptide from the seeds of Momordica cochinchinensis, the Chinese drug mubiezhi. Int J Biochem Cell Biol 31:707–715

    PubMed  CAS  Google Scholar 

  • Hurkman WJ, Tanaka CK (1986) Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol 81:802–806

    PubMed  CAS  Google Scholar 

  • Issaq HJ, Chan KC, Janini GM, Conrads TP, Veenstra TD (2005) Multidimensional separation of peptides for effective proteomic analysis. J Chromatogr B Analyt Technol Biomed Life Sci 817:35–47

    PubMed  CAS  Google Scholar 

  • Issaq HJ, Chan KC, Blonder J, Ye X, Veenstra TD (2009) Separation, detection and quantitation of peptides by liquid chromatography and capillary electrochromatography. J Chromatogr A 1216:1825–1837

    PubMed  CAS  Google Scholar 

  • Jacobs JM, Mottaz HM, Yu LR, Anderson DJ, Moore RJ, Chen WN, Auberry KJ, Strittmatter EF, Monroe ME, Thrall BD, Camp DG II, Smith RD (2004) Multidimensional proteome analysis of human mammary epithelial cells. J Proteome Res 3:68–75

    PubMed  CAS  Google Scholar 

  • Janini GM, Chan KC, Conrads TP, Issaq HJ, Veenstra TD (2004) Two-dimensional liquid chromatography-capillary zone electrophoresis-sheathless electrospray ionization-mass spectrometry: evaluation for peptide analysis and protein identification. Electrophoresis 25:1973–1980

    PubMed  CAS  Google Scholar 

  • Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60:2299–2301

    PubMed  CAS  Google Scholar 

  • Kende H, Zeevaart J (1997) The five “classical” plant hormones. Plant Cell 9:1197–1210

    PubMed  CAS  Google Scholar 

  • Kim MH, Park SC, Kim JY, Lee SY, Lim HT, Cheong H, Hahm KS, Park Y (2006) Purification and characterization of a heat-stable serine protease inhibitor from the tubers of new potato variety “Golden Valley”. Biochem Biophys Res Commun 346:681–686

    PubMed  CAS  Google Scholar 

  • Kim JY, Park SC, Hwang I, Cheong H, Nah JW, Hahm KS, Park Y (2009) Protease inhibitors from plants with antimicrobial activity. Int J Mol Sci 10:2860–2872

    PubMed  CAS  Google Scholar 

  • Kolodzeiskaia MV (1983) Affinity chromatography of aminopeptidases. Ukr Biokhim Zh 55:577–591

    PubMed  CAS  Google Scholar 

  • Lacroix M, Poinsot V, Fournier C, Couderc F (2005) Laser-induced fluorescence detection schemes for the analysis of proteins and peptides using capillary electrophoresis. Electrophoresis 26:2608–2621

    PubMed  CAS  Google Scholar 

  • Lee JH, Lee DH, Yu HE, Kim JH, Lee JS (2006) Isolation and characterization of a novel glutathione S-transferase-activating peptide from the oriental medicinal plant Phellodendron amurense. Peptides 27:2069–2074

    PubMed  CAS  Google Scholar 

  • Li X, Stoll DR, Carr PW (2009) Equation for peak capacity estimation in two-dimensional liquid chromatography. Anal Chem 81:845–850

    PubMed  CAS  Google Scholar 

  • Lim KB, Kassel DB (2006) Phosphopeptides enrichment using on-line two-dimensional strong cation exchange followed by reversed-phase liquid chromatography/mass spectrometry. Anal Biochem 354:213–219

    PubMed  CAS  Google Scholar 

  • Lin P, **a L, Ng TB (2007) First isolation of an antifungal lipid transfer peptide from seeds of a Brassica species. Peptides 28:1514–1519

    PubMed  CAS  Google Scholar 

  • Lin P, Wong JH, **a L, Ng TB (2009) Campesin, a thermostable antifungal peptide with highly potent antipathogenic activities. J Biosci Bioeng 108:259–265

    PubMed  CAS  Google Scholar 

  • Lindsey K, Casson S, Chilley P (2002) Peptides: new signaling molecules in plants. Trends Plant Sci 7:78–83

    PubMed  CAS  Google Scholar 

  • Link AJ (2002) Multidimensional peptide separations in proteomics. Trends Biotechnol 20(Suppl):S8–S13

    PubMed  CAS  Google Scholar 

  • Liu H, Lin D, Yates JR III (2002) Multidimensional separations for protein/peptide analysis in the post-genomic era. Biotechniques 32:898, 900, 902 passim

    PubMed  CAS  Google Scholar 

  • Ma DZ, Wang HX, Ng TB (2009) A peptide with potent antifungal and antiproliferative activities from Nepalese large red beans. Peptides 30:2089–2094

    PubMed  CAS  Google Scholar 

  • Mann M, Hendrickson RC, Pandey A (2001) Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem 70:437–473

    PubMed  CAS  Google Scholar 

  • Manzano C, Abraham Z, Lopez-Torrejon G, Del Pozo JC (2008) Identification of ubiquitinated proteins in Arabidopsis. Plant Mol Biol 68:145–158

    PubMed  CAS  Google Scholar 

  • Marquez-Escalante JA, Figueroa-Soto CG, Valenzuela-Soto EM (2006) Isolation and partial characterization of trehalose 6-phosphate synthase aggregates from Selaginella lepidophylla plants. Biochimie 88:1505–1510

    PubMed  CAS  Google Scholar 

  • Marx J (1996) Plants, like animals, may make use of peptide signals. Science 273:1338–1339

    PubMed  CAS  Google Scholar 

  • Matsubayashi Y, Sakagami Y (1996) Phytosulfokine, sulfated peptides that induce the proliferation of single mesophyll cells of Asparagus officinalis L. Proc Natl Acad Sci USA 93:7623–7627

    PubMed  CAS  Google Scholar 

  • McDonald WH, Ohi R, Miyamoto DT, Mitchison TJ, Yates JR (2002) Comparison of three directly coupled HPLC MS/MS strategies for identification of proteins from complex mixtures: single-dimension LC-MS/MS, 2-phase MudPIT, and 3-phase MudPIT. Int J Mass Spectrom 219:245–251

    CAS  Google Scholar 

  • Melander W, Horvath C (1977) Salt effect on hydrophobic interactions in precipitation and chromatography of proteins: an interpretation of the lyotropic series. Arch Biochem Biophys 183:200–215

    PubMed  CAS  Google Scholar 

  • Molnar I, Horvath C (1977) Separation of amino acids and peptides on non-polar stationary phases by high-performance liquid chromatography. J Chromatogr 142:623–640

    PubMed  CAS  Google Scholar 

  • Moravcova D, Kahle V, Rehulkova H, Chmelik J, Rehulka P (2009) Short monolithic columns for purification and fractionation of peptide samples for matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry analysis in proteomics. J Chromatogr A 1216:3629–3636

    PubMed  CAS  Google Scholar 

  • Motoyama A, Xu T, Ruse CI, Wohlschlegel JA, Yates JR III (2007) Anion and cation mixed-bed ion exchange for enhanced multidimensional separations of peptides and phosphopeptides. Anal Chem 79:3623–3634

    PubMed  CAS  Google Scholar 

  • Neverova I, Van Eyk JE (2005) Role of chromatographic techniques in proteomic analysis. J Chromatogr B Analyt Technol Biomed Life Sci 815:51–63

    PubMed  CAS  Google Scholar 

  • Ooi LS, Tian L, Su M, Ho WS, Sun SS, Chung HY, Wong HN, Ooi VE (2008) Isolation, characterization, molecular cloning and modeling of a new lipid transfer protein with antiviral and antiproliferative activities from Narcissus tazetta. Peptides 29:2101–2109

    PubMed  CAS  Google Scholar 

  • Opiteck GJ, Ramirez SM, Jorgenson JW, Moseley MA III (1998) Comprehensive two-dimensional high-performance liquid chromatography for the isolation of overexpressed proteins and proteome map**. Anal Biochem 258:349–361

    PubMed  CAS  Google Scholar 

  • Oscarsson S, Karsnas P (1998) Salt-promoted adsorption of proteins onto amphiphilic agarose-based adsorbents. II. Effects of salt and salt concentration. J Chromatogr A 803:83–93

    PubMed  CAS  Google Scholar 

  • Ostin A, Bergstrom T, Fredriksson SA, Nilsson C (2007) Solvent-assisted trypsin digestion of ricin for forensic identification by LC-ESI MS/MS. Anal Chem 79:6271–6278

    PubMed  Google Scholar 

  • Peckham GD, Bugos RC, Su WW (2006) Purification of GFP fusion proteins from transgenic plant cell cultures. Protein Expr Purif 49:183–189

    PubMed  CAS  Google Scholar 

  • Pelegrini PB, Farias LR, Saude AC, Costa FT, Bloch C Jr, Silva LP, Oliveira AS, Gomes CE, Sales MP, Franco OL (2009) A novel antimicrobial peptide from Crotalaria pallida seeds with activity against human and phytopathogens. Curr Microbiol 59:400–404

    PubMed  CAS  Google Scholar 

  • Porath J (1986) Salt-promoted adsorption: recent developments. J Chromatogr 376:331–341

    PubMed  CAS  Google Scholar 

  • Porath J, Sundberg L, Fornstedt N, Olsson I (1973) Salting-out in amphiphilic gels as a new approach to hydrophobic adsorption. Nature 245:465–466

    PubMed  CAS  Google Scholar 

  • Raftery MJ (2008) Enrichment by organomercurial agarose and identification of cys-containing peptides from yeast cell lysates. Anal Chem 80:3334–3341

    PubMed  CAS  Google Scholar 

  • Risley DS, Strege MA (2000) Chiral separations of polar compounds by hydrophilic interaction chromatography with evaporative light scattering detection. Anal Chem 72:1736–1739

    PubMed  CAS  Google Scholar 

  • Rivillas-Acevedo LA, Soriano-Garcia M (2007) Isolation and biochemical characterization of an antifungal peptide from Amaranthus hypochondriacus seeds. J Agric Food Chem 55:10156–10161

    PubMed  CAS  Google Scholar 

  • Rudenskaia GN (1994) Affinity chromatography of proteinases. Bioorg Khim 20:213–228

    PubMed  CAS  Google Scholar 

  • Sammer UF, Volksch B, Mollmann U, Schmidtke M, Spiteller P, Spiteller M, Spiteller D (2009) 2-amino-3-(oxirane-2,3-dicarboxamido)-propanoyl-valine, an effective peptide antibiotic from the epiphyte Pantoea agglomerans 48b/90. Appl Environ Microbiol 75:7710–7717

    PubMed  CAS  Google Scholar 

  • Sandra K, Moshir M, D’Hondt F, Tuytten R, Verleysen K, Kas K, Francois I, Sandra P (2009) Highly efficient peptide separations in proteomics. Part 2: bi- and multidimensional liquid-based separation techniques. J Chromatogr B Analyt Technol Biomed Life Sci 877:1019–1039

    PubMed  CAS  Google Scholar 

  • Santa T, Fukushima T, Ichibangase T, Imai K (2008) Recent progress in the development of derivatization reagents having a benzofurazan structure. Biomed Chromatogr 22:343–353

    PubMed  CAS  Google Scholar 

  • Santoni V, Bellini C, Caboche M (1994) Use of two-dimensional protein-pattern analysis for the characterization of Arabidopsis thaliana mutants. Planta 192:557–566

    CAS  Google Scholar 

  • Shevchenko A, Jensen ON, Podtelejnikov AV, Sagliocco F, Wilm M, Vorm O, Mortensen P, Boucherie H, Mann M (1996) Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci USA 93:14440–14445

    PubMed  CAS  Google Scholar 

  • Silva-Sanchez C, de la Rosa AP, Leon-Galvan MF, de Lumen BO, de Leon-Rodriguez A, de Mejia EG (2008) Bioactive peptides in amaranth (Amaranthus hypochondriacus) seed. J Agric Food Chem 56:1233–1240

    PubMed  CAS  Google Scholar 

  • Snyder LR, Dolan JW, Gant JR (1979) Gradient elution in high-performance liquid chromatography: I. Theoretical basis for reversed-phase systems. J Chromatogr A 165:3–30

    CAS  Google Scholar 

  • Stasyk T, Huber LA (2004) Zooming in: fractionation strategies in proteomics. Proteomics 4:3704–3716

    PubMed  CAS  Google Scholar 

  • Strege MA, Stevenson S, Lawrence SM (2000) Mixed-mode anion-cation exchange/hydrophilic interaction liquid chromatography-electrospray mass spectrometry as an alternative to reversed phase for small molecule drug discovery. Anal Chem 72:4629–4633

    PubMed  CAS  Google Scholar 

  • Sykora C, Hoffmann R, Hoffmann P (2007) Enrichment of multiphosphorylated peptides by immobilized metal affinity chromatography using Ga(III)- and Fe(III)-complexes. Protein Pept Lett 14:489–496

    PubMed  CAS  Google Scholar 

  • Tang J, Gao M, Deng C, Zhang X (2008) Recent development of multi-dimensional chromatography strategies in proteome research. J Chromatogr B Analyt Technol Biomed Life Sci 866:123–132

    PubMed  CAS  Google Scholar 

  • Tolstikov VV, Fiehn O (2002) Analysis of highly polar compounds of plant origin: combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry. Anal Biochem 301:298–307

    PubMed  CAS  Google Scholar 

  • Tsugita A, Kamo M (1999) 2-D electrophoresis of plant proteins. Methods Mol Biol 112:95–97

    PubMed  CAS  Google Scholar 

  • Twerenbold D, Gerber D, Gritti D, Gonin Y, Netuschill A, Rossel F, Schenker D, Vuilleumier JL (2001) Single molecule detector for mass spectrometry with mass independent detection efficiency. Proteomics 1:66–69

    PubMed  CAS  Google Scholar 

  • Vacek J, Klejdus B, Petrlova J, Lojkova L, Kuban V (2006) A hydrophilic interaction chromatography coupled to a mass spectrometry for the determination of glutathione in plant somatic embryos. Analyst 131:1167–1174

    PubMed  CAS  Google Scholar 

  • van Oss CJ, Good RJ, Chaudhury MK (1986) Nature of the antigen-antibody interaction. Primary and secondary bonds: optimal conditions for association and dissociation. J Chromatogr 376:111–119

    PubMed  Google Scholar 

  • Van Sluyter SC, Marangon M, Stranks SD, Neilson KA, Hayasaka Y, Haynes PA, Menz RI, Waters EJ (2009) Two-step purification of pathogenesis-related proteins from grape juice and crystallization of thaumatin-like proteins. J Agric Food Chem 57:11376–11382

    PubMed  Google Scholar 

  • Wagner K, Miliotis T, Marko-Varga G, Bischoff R, Unger KK (2002) An automated on-line multidimensional HPLC system for protein and peptide map** with integrated sample preparation. Anal Chem 74:809–820

    PubMed  CAS  Google Scholar 

  • Walcher W, Timperio AM, Zolla L, Huber CG (2003) Characterization of a variant of the spinach PSII type I light-harvesting protein using kinetically controlled digestion and RP-HPLC-ESI-MS. Anal Chem 75:6775–6780

    PubMed  CAS  Google Scholar 

  • Wang HX, Ng TB (2005) An antifungal peptide from the coconut. Peptides 26:2392–2396

    PubMed  CAS  Google Scholar 

  • Wang SZ, Ding K, Lin SQ, Lin ZB (2007) Isolation, purification and structural analysis of GL-PP-3A, an active polysaccharide peptide from Ganoderma lucidum. Yao Xue Xue Bao 42:1058–1061

    PubMed  CAS  Google Scholar 

  • Wang S, Rao P, Ye X (2009) Isolation and biochemical characterization of a novel leguminous defense peptide with antifungal and antiproliferative potency. Appl Microbiol Biotechnol 82:79–86

    PubMed  CAS  Google Scholar 

  • Washburn MP, Wolters D, Yates JR III (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247

    PubMed  CAS  Google Scholar 

  • Washburn MP, Ulaszek R, Deciu C, Schieltz DM, Yates JR III (2002) Analysis of quantitative proteomic data generated via multidimensional protein identification technology. Anal Chem 74:1650–1657

    PubMed  CAS  Google Scholar 

  • Witherup KM, Bogusky MJ, Anderson PS, Ramjit H, Ransom RW, Wood T, Sardana M (1994) Cyclopsychotride A, a biologically active, 31-residue cyclic peptide isolated from Psychotria longipes. J Nat Prod 57:1619–1625

    PubMed  CAS  Google Scholar 

  • Wolters DA, Washburn MP, Yates JR III (2001) An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 73(23):5683–5690

    PubMed  CAS  Google Scholar 

  • **ang B, Du GH, Wang XC, Zhang SX, Qin XY, Kong JQ, Cheng KD, Li YJ, Wang W (2010) Elucidating the structure of two cyclotides of Viola tianshanica maxim by MALDI TOF/TOF MS analysis. Yao Xue Xue Bao 45:1402–1409

    PubMed  CAS  Google Scholar 

  • Yoshida T (1997) Peptide separation in normal phase liquid chromatography. Anal Chem 69:3038–3043

    PubMed  CAS  Google Scholar 

  • Yu LR, Zhu Z, Chan KC, Issaq HJ, Dimitrov DS, Veenstra TD (2007) Improved titanium dioxide enrichment of phosphopeptides from HeLa cells and high confident phosphopeptide identification by cross-validation of MS/MS and MS/MS/MS spectra. J Proteome Res 6:4150–4162

    PubMed  CAS  Google Scholar 

  • Zhang X, Fang A, Riley CP, Wang M, Regnier FE, Buck C (2010) Multi-dimensional liquid chromatography in proteomics – a review. Anal Chim Acta 664:101–113

    PubMed  CAS  Google Scholar 

  • Zhou M, Veenstra T (2008) Mass spectrometry: m/z 1983-2008. Biotechniques 44(667–668):670

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Sagar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sagar, S., Gehring, C., Minneman, K.P. (2012). Methods to Isolate and Identify New Plant Signaling Peptides. In: Irving, H., Gehring, C. (eds) Plant Signaling Peptides. Signaling and Communication in Plants, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27603-3_12

Download citation

Publish with us

Policies and ethics

Navigation