An Automated Approach for Detection of Shallow Landslides from LiDAR Derived DEM Using Geomorphological Indicators in a Tropical Forest

  • Chapter
  • First Online:
Terrigenous Mass Movements

Abstract

Landslide inventories in the tropical dense forested areas are routinely compiled by means of a terrain model interpretation (e.g. using stereo-radargrammetry; stereo-aerial photographs; stereo-optical imagery), aided with field investigations. However, construction of the landslide inventories from aerial photographs and field based studies are excessively time consuming which involves relatively high cost. Moreover, these techniques are less effective when applied to dense tropical forest where landslide scars are difficult to map from the aerial photographs. This chapter attempts an automatic procedure for detection of rotational shallow landslides from airborne based light detection and ranging (LiDAR) derived high resolution digital elevation model (DEM) in a tropical forest in Cameron Highlands, Malaysia. For the extraction of landslides from DEM, we used various geomorphic indicators such as surface roughness index, vegetation index and breaklines. The entire landslide extraction process was implemented in ArcGIS platform and custom Python scripts was used for the implementation and model construction. For modeling purpose, the Python Imaging Library (PIL) was used. The terrain zone classification was tested for various DEM resolutions of 1.5 m, 2 m, 3 m, 4 m, 5 m and 8 m. For testing purposes, the resolutions with the best results were used for further processing. To automate the classification of the terrain zones, a rule based region growing threshold was defined depending on the resolution of the DEM. Finally, a statistical description was applied to rank the extracted terrain zones according to their compliance with the landslide signature. Subsequently, the landslide probability index (LPI) was calculated by performing zonal operation using each of the geomorphic parameters. Hence, the LIDAR-derived DEM provides adequate landslide factor maps to identify the landslide occurred areas, which could be used for further landslide assessment and site-planning purposes in the tropical regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott PL (2004) Natural disasters. McGraw-Hill Companies Inc., New York, p 460, BBC (2010) Weather Cameron Highlands. http://www.bbc.co.uk/weather/world/city_guides/results.shtml?tt=TT002580. Accessed 8 Nov 2010

  • Akgun A, Dag S, Bulut F (2008) Landslide susceptibility map** for a landslide prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models. Environ Geol 54:1127–1143

    Article  Google Scholar 

  • Akgun A, Bulut F (2007) GIS-based landslide susceptibility for Arsin-Yomra region (Trabzon, North Turkey). Environ Geol 51:1377–1387

    Article  Google Scholar 

  • Akgun A, Turk N (2010) Landslide susceptibility map** for Ayvalik (Western Turkey) and its vicinity by multicriteria decision analysis. Environ Earth Sci 61(3):13595–13611

    Article  Google Scholar 

  • Brardinoni F, Slaymaker O, Hassan MA (2003) Landslide inventory in a rugged forested watershed: a comparison between air-photo and field survey data. Geomorphology 54:179–196

    Article  Google Scholar 

  • Bishop MP, Shroder JF Jr (2004) Geographic information science and mountain geomorphology. Springer, Berlin

    Google Scholar 

  • Can T, Nefeslioglu HA, Gokceoglu C, Sonmez H, Duman TY (2005) Susceptibility assessment of shallow earthflows triggered by heavy rainfall at three subcatchments by logistic regression analyses. Geomorphology 72:250–271

    Article  Google Scholar 

  • Carter W, Shrestha R, Tuell G, Bloomquist D, Sartori M (2001) Airborne laser swath map** shines new light on earth’s topography. EOS Trans, Am Geophys Union 82(46):549–555

    Article  Google Scholar 

  • CCRS (2005) Canada centre for remote sensing glossary. http://www.ccrs.nrcan.gc.ca/glossary/index_e.php. Accessed 29 Nov 2010

  • Clark ML, Clark DB, Roberts DA (2004) Small-footprint LiDAR estimation of sub-canopy elevation and tree height in a tropical rain forest landscape. Remote Sens Environ 91(1):68–89

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Shuster RL (eds) Landslides: investigation and mitigation. Transportation Research Board Special Report 247:36–75

    Google Scholar 

  • Danneels G, Havenith H-B, Strom A, Pirard E (2008) Landslide detection methods, inventory analysis and susceptibility map** applied to the Tien Shan, Kyrgyz Republic. In: Sassa K, Canuti P (eds) Landslides. Disaster risk reduction. Springer, Berlin

    Google Scholar 

  • De Smith MJ, Goodchild MF, Longley PA (2007) Geospatial analysis: a comprehensive guide to principles, techniques and software tools, 3rd edn. Troubador, London

    Google Scholar 

  • Dikau R (1988) Entwurf einer geomorphographisch: analytischen Systematik von Reliefeinheiten. In: Heidelberger geographische bausteine, vol 5. Heidelberg

    Google Scholar 

  • Dikau R, Schmidt J (1999) Georeliefklassifikation. In: Schneider-Sliwa R, Schaub D, Gerold G (Hrsg.) Angewandte Landschaftsökologie – Grundlagen und Methoden, Heidelberg pp 217–244

    Google Scholar 

  • Duman TY, Can T, Gokceoglu C, Nefeslioglu HA, Sonmez H (2006) Application of logistic regression for landslide susceptibility zoning of Cekmece Area, Istanbul, Turkey. Environ Geol 51:241–256

    Article  Google Scholar 

  • Ercanoglu M, Gokceoglu C (2002) Assessment of landslide susceptibility for a landslide prone area (north of Yenice, NW Turkey) by fuzzy approach. Environ Geol 41:720–730

    Article  Google Scholar 

  • Ercanoglu M, Gokceoglu C (2004) Use of fuzzy relations to produce landslide 18 Susceptibility map of a landslide prone area (West Black Sea Region, Turkey). Eng Geol 75:229–250

    Article  Google Scholar 

  • Ercanoglu M (2005) Landslide susceptibility assessment of SE Bartin (West Black Sea region, Turkey) by artificial neural networks. Nat Hazards Earth Syst Sci 5:979–992

    Article  Google Scholar 

  • Ercanoglu M, Kasmer O, Temiz N (2008) Adaptation and comparison of expert opinion to analytical hierarchy process for landslide susceptibility map**. Bull Eng Geol Environ 67:565–578

    Article  Google Scholar 

  • ESRI (2010) Performance of ArcObjects. http://resources.esri.com/help/9.3/arcgisengine/dotnet/26b7a578-7854-4ff9-b96c-948eded73626.htm. Accessed 01 Dec 2010

  • Fara HD, Scheidegger AE (1963) An eigenvalue method for the statistical evaluation of fault plane solutions of earthquakes. Seismol Soc Am Bull 53:811–816

    Google Scholar 

  • Fortuin R (2006) Soil erosion in Cameron Highlands. Saxion University Deventer, Environmental Technology, The Netherlands. http://www.reach.org.my/index.php?option=com_content&view=article&id=80:soil-erosion-in-cameron-highlands&catid=68:land-slides-erosion-and-iltation&Itemid=13. Accessed 8 Nov 2010

  • Gajski D (2004) Rasterbasierte Geländeoberflächeanalysen. Dissertation, Wien

    Google Scholar 

  • Glenn NF, Streutker DR, Chadwick J, Glenn DJ, Thackray GD, Dorsch SJ (2006) Analysis of Lidar-derived topographic information for characterizing and differentiating landslide morphology and activity. Geomorphology 73:131–148

    Article  Google Scholar 

  • Gokceoglu C, Sezer E (2009) A statistical assessment on international landslide literature (1945–2008). Landslides 6:345–351

    Article  Google Scholar 

  • Guzzetti F (2004) Landslide map**, hazard assessment and risk avaluation: limits and potential. In: Proceedings international symposium on landslide and debris flow hazard assessment, National Center for Research on Earthquake Engineering, Taipei, 7–8 Oct 2004, pp C1–C17

    Google Scholar 

  • Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81:166–184

    Article  Google Scholar 

  • Gray A (1997) Osculating circles to plane curves. In: Modern differential geometry of curves and surfaces with mathematica, 2nd edn. CRC Press, Boca Raton, pp 111–115

    Google Scholar 

  • Hylland MD, Lowe M (1997) Regional landslide-hazard evaluation using landslide slopes, western Wasatch County, Utah. Environ Eng Geosci 3(1):31–43

    Google Scholar 

  • IAEG Commission on Landslides (1990) Suggested nomenclature for landslides. Bull Int Assoc Eng Geol 41:13–16

    Google Scholar 

  • Iovine G, Di Gregorio S, Lupiano V (2003) Debris-flow susceptibility assessment through cellular automata modelling: an example from 15–16 December 1999 disaster at Cervinara and San Martino Valle Caudina (Campania, southern Italy). Nat Hazards Earth Syst Sci 3:457–468

    Article  Google Scholar 

  • Jakob M, Hungr O (2005) Debris-flow hazards and related phenomena. Springer, Berlin

    Google Scholar 

  • Kugler H (1974) Das Georelief und seine kartographische Modellierung. Dissertation B, Martin-Luther-Universität Halle, Wittenburg

    Google Scholar 

  • Lazacode (2010) Cameron Highlands History. Lazacode Malaysia Education and Creative Information portal. http://lazacode.com/place-empire/cameron-highlands-history. Accessed 8 Jan 2011

  • Lee EM, Jones DKC (2004) Landslide risk assessment. Thomas Telford, London

    Google Scholar 

  • Lee S (2005) Application of logistic regression model and its validation for landslide susceptibility map** using GIS and remote sensing data. Int J Remote Sens 26:1477–1491

    Article  Google Scholar 

  • McKean J, Roering J (2003) Objective landslide detection and surface morphology map** using high-resolution airborne laser altimetry. Geomorphology 57:331–351

    Article  Google Scholar 

  • NASA (2011) Measuring vegetation (NDVI and EVI). By Weier J, Herring D. NASA Earth Observatory. http://earthobservatory.nasa.gov/Features/MeasuringVegetation. Accessed 8 Jan 2011

  • Nefeslioglu HA, Gokceoglu C (2011) Probabilistic risk assessment in medium scale for rainfall induced earthflows: Catakli catchment area (Cayeli, Rize, Turkey). Math Probl Eng, Article ID 280431

    Google Scholar 

  • Nefeslioglu HA, Duman TY, Durmaz S (2008) Landslide susceptibility map** for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey). Geomorphology 94(3–4):401–418

    Article  Google Scholar 

  • Nefeslioglu HA, Sezer E Gokceoglu C, Bozkir AS, Duman TY (2010) Assessment of landslide susceptibility by Decision Trees in the metropolitan area of Istanbul, Turkey. Math Probl Eng. pp 1–15. doi:10.1155/2010/901095,

  • Oh HJ, Pradhan B (2010). Application of neuro-fuzzy model to landslide susceptibility map** for shallow landslides in a tropical hilly area. Comput Geosci (Article on-line first available). doi:10.1016/j.cageo.2010.10.012

  • Penck A (1894) Morphologie der Erdoberfläche. J. Engelhorn, Stuttgart

    Google Scholar 

  • Pollack M (2002) Methodischer Beitrag zur GIS-basierten mittelmaßstäbigen geomorphologischen Klassifizierung und Kartierung des Zentral-Altai auf Grundlage von DGM und Geländeerhebungen. Diploma Thesis, TU Dresden, Institute for Cartography

    Google Scholar 

  • Pradhan B (2010a) Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia. Adv Space Res 45(10):1244–1256

    Article  Google Scholar 

  • Pradhan B (2010b) Manifestation of an advanced fuzzy logic model coupled with Geoinformation techniques for landslide susceptibility analysis. Environ Ecol Stat (article-on line first available). doi:10.1007/s10651-010-0147-7

  • Pradhan B (2010c) Application of an advanced fuzzy logic model for landslide susceptibility analysis. International Journal of Computational Intelligence Systems 3(3):370–381. doi:10.2991/ijcis.2010.3.3.12

    Article  Google Scholar 

  • Pradhan B (2010d) Landslide susceptibility map** of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. J Indian Soc Remote Sens 38(2):301–320. doi:10.1007/s12524-010-0020-z

    Article  Google Scholar 

  • Pradhan B (2011) Use of GIS based fuzzy relations and its cross application to produce landslide susceptibility maps in three test areas in Malaysia. Environ Earth Sci 63(2):329–349. doi:10.1007/s12665-010-0705-1

    Article  Google Scholar 

  • Pradhan B, Lee S (2010a) Regional landslide susceptibility analysis using back-propagation neural network at Cameron Highlands, Malaysia. Landslides 7(1):13–30

    Article  Google Scholar 

  • Pradhan B, Lee S (2010b) Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environ Earth Sci 60(5):1037–1054

    Article  Google Scholar 

  • Pradhan B, Lee S (2010c) Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modeling. Environ Model Softw 25(6):747–759

    Article  Google Scholar 

  • Pradhan B, Lee S, Buchroithner MF (2010a) A GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analyses. Comput Environ Urban Syst 34:216–235

    Article  Google Scholar 

  • Pradhan B, Lee S, Buchroithner MF (2010b) Remote sensing and GIS-based landslide susceptibility analysis and its cross-validation in three test areas using a frequency ratio model. Photogrammetrie, Fernekundung, Geoinformation 1(1):17–32

    Article  Google Scholar 

  • Pradhan B, Sezer A, Gokceoglu C, Buchroithner MF (2010c) Landslide susceptibility map** by neuro-fuzzy approach in a landslide prone area (Cameron Highland, Malaysia). IEEE Trans Geosci Remote Sens 48(12):4164–4177. doi:10.1109/TGRS.2010.2050328

    Article  Google Scholar 

  • Razak KA, Straatsma MW, Van Westen CJ, de Jong SM (2010). Airborne laser scanning of forested landslides: terrain model quality and visualization. Geomorphology (article on-line first available). doi:10.1016/j.geomorph.2010.11.003

  • Razak KA, Straatsma MW, Van Westen CJ, Malet JP (2009) Utilization of airborne LIDAR data for landslide map** in forested terrain: status and challenges. Presented at the 10th South East Asian Survey Congress (SEASC) in conjunction with 16th UNGEGN Workshop—16th ABLOS Business Meeting and 4th Indonesian Geoinformation Technology Exhibition, 04–07 Aug 2009, Bali, Indonesia, p 10

    Google Scholar 

  • Ritter ME (2010) The physical environment: an introduction to physical geography. http://www.uwsp.edu/geo/faculty/ritter/geog101/textbook/title_page.html. Accessed 9 Jan 2011

  • Rivard LA (2009) Geohazard-associated Geounits. Springer, Berlin

    Book  Google Scholar 

  • Sassa K, Fukuoka H, Wang F, Wang G (2005) Landslides risk analysis and sustainable disaster management. Springer, Berlin

    Google Scholar 

  • Sezer EA, Pradhan B, Gokceoglu C (2011) Manifestation of an adaptive neuro-fuzzy model on landslide susceptibility map**: Klang valley, Malaysia. Expert Syst Appl 38(7):8208–8219

    Article  Google Scholar 

  • Sithole G, Vosselman G (2004) Experimental comparison of filter algorithms for bare-earth extraction from airborne laser scanning points clouds. ISPRS J Photogramm Remote Sens 59(1–2):85–101

    Article  Google Scholar 

  • Schulz WH (2007) Landslide susceptibility revealed by LIDAR imagery and historical records, Seattle, Washington. Eng Geol 89:67–87

    Article  Google Scholar 

  • Schuster RL, Wieczorek GF (2002) Landslide triggers and types. In: Rybář J, Stemberk J, Wagner P (eds) Landslides. Swets and Zeitlinger B.V., Lisse

    Google Scholar 

  • Takahashi T (2009) Mechanics-based approach toward the mitigation of debris flow disasters. In: Sassa K, Canuti P (eds) Landslides. Disaster risk reduction. Springer, Berlin

    Google Scholar 

  • Wohl E, Oguchi T (2004) Geographic information systems and mountain hazards. In: Bishop MP, Shroder JF Jr (eds) Geographic information science and mountain geomorphology. Springer, Berlin, pp 309–341

    Google Scholar 

  • Yilmaz I (2009) Landslide susceptibility map** using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat-Turkey). Comput Geosci 35(6):1125–1138

    Article  Google Scholar 

  • Yilmaz I (2010a) The effect of the sampling strategies on the landslide susceptibility map** by conditional probability (CP) and artificial neural network (ANN). Environ Earth Sci 60:505–519

    Article  Google Scholar 

  • Yilmaz I (2010b) Comparison of landslide susceptibility map** methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine. Environ Earth Sci 61:821–836

    Article  Google Scholar 

  • Youssef AM, Pradhan B, Gaber AFD, Buchroithner MF (2009) Geomorphological hazard analysis along the Egyptian red sea coast between Safaga and Quseir. Nat Hazards Earth Syst Sci 9:751–766

    Article  Google Scholar 

Download references

Acknowledgments

This research is fully supported by the Alexander von Humboldt Foundation (AvH), Germany by providing AvH fellowship and Georg Forester Return Fellowship to carry out research at Dresden University of Technology, Germany and University Putra Malaysia respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajeet Pradhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mann, U., Pradhan, B., Prechtel, N., Buchroithner, M.F. (2012). An Automated Approach for Detection of Shallow Landslides from LiDAR Derived DEM Using Geomorphological Indicators in a Tropical Forest. In: Pradhan, B., Buchroithner, M. (eds) Terrigenous Mass Movements. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25495-6_1

Download citation

Publish with us

Policies and ethics

Navigation