Denitrification Activity in Soils for Sustainable Agriculture

  • Chapter
  • First Online:
Bacteria in Agrobiology: Plant Nutrient Management

Abstract

Denitrification is a microbial process in the nitrogen cycle in which oxidized nitrogen compounds are used as alternative electron acceptors for energy production. Denitrifying bacteria occur in practically every sort of environmental niche: soil, water, and sediment. Denitrification decreases the leaching of nitrate to ground and surface waters and is the main biological process responsible for the return of fixed nitrogen to the atmosphere. On the other hand, it contributes to the greenhouse effects, to the destruction of the ozone layer, and is a loss of nitrogen otherwise available for the growth of plants. A short overview of denitrification activity in soils leading to a sustainable agriculture is given. The genus Bradyrhizobium and its relevance in the process of denitrification are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Antoun H, Prévost D (2000) PGPR activity of Rhizobium with nonleguminous plants. In: Proceedings of the 5th International PGPR workshop, Villa Carlos Paz, Córdoba

    Google Scholar 

  • Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). Plant Soil 204:57–67

    Article  CAS  Google Scholar 

  • Asakawa S (1993) Denitrifying ability of indigenous strains of Bradyrhizobium japonicum isolated from fields under paddy-upland rotation. Biol Fert Soils 15:196–200

    Article  CAS  Google Scholar 

  • Baudoin E, Philippot L, Cheneby D, Chapuis-Lardy F, Fromin N, Bru D, Rabary B, Brauman A (2009) Direct seeding mulch-based crop** increases both the activity and the abundance of denitrifier communities in a tropical soil. Soil Biol Biochem 41:1703–1709

    Article  CAS  Google Scholar 

  • Bedmar E, Robles EF, Delgado MJ (2005) The complete denitrification pathway of the symbiotic, nitrogen-fixing bacterium Bradyrhizobium japonicum. 10th nitrogen cycle meeting 2004. Biochem Soc Trans 33(Part 1):141–145

    PubMed  CAS  Google Scholar 

  • Bedmar EJ, Delgado MJ (2006). Metabolismo anaerobio del nitrato en bacterias simbióticas: respiración y desnitrificación. In: Bedmar EJ, González J, Lluch C, Rodelas B (eds) Fijación de Nitrógeno: Fundamentos y Aplicaciones. Editorial SEFIN, Granada, Spain. ISBN: 84-61-1198-5. pp. 92–101

    Google Scholar 

  • Breitenbeck GA, Bremner JM (1989) Ability of free-living cells of Bradyrhizobium japonicum to denitrify in soils. Biol Fert Soils 7:219–224

    Article  Google Scholar 

  • Bremer C, Braker G, Matthies D, Reuter A, Engels C, Conrad R (2007) Impact of plant functional group, plant species, and sampling time on the composition of nirK-type denitrifier communities in soil. Appl Environ Microbiol 73:6876–6884

    Article  PubMed  CAS  Google Scholar 

  • Bueno E, Mesa S, Sanchez C, Bedmar E, Delgado MJ (2010) NifA is required for maximal expression of denitrification genes in Bradyrhizobium japonicum. Environ Microbiol 12:393–400

    Article  PubMed  CAS  Google Scholar 

  • Carvalho JLN, Cerri CEP, Feigl BJ, Pıccolo MC, Godinho VP, Cerri CC (2009) Carbon sequestration in agricultural soils in the Cerrado region of the Brazilian Amazon. Soil Till Res 103:342–349

    Article  Google Scholar 

  • Casella S, Payne WJ (1996) Potential of denitrifiers for soil environment protection. FEMS Microbiol Lett 140:1–8

    Article  CAS  Google Scholar 

  • Cheneby D, Philippot L, Hartmann A, Hénault C, Germon J-C (2000) 16S DNA analysis for characterization of denitrifying bacteria isolated from three agriculture soils. FEMS Microbiol Ecol 34:121–128

    Article  PubMed  CAS  Google Scholar 

  • Ciampitti IA, Ciarlo EA, Conti ME (2008) Nitrous oxide emissions from soil during soybean (Glycine max L. Merrill) crop phenological stages and stubbles decomposition period. Biol Fert Soils 44:581–588

    Article  Google Scholar 

  • Ciarlo E, Conti M, Bartoloni N, Rubio G (2007) The effect of moisture on nitrous oxide emissions from soil and the N2O/(N2O+N2) ratio under laboratory conditions. Biol Fert Soils 43:675–681

    Article  CAS  Google Scholar 

  • David MB, Del Grosso SJ, Hu X, Marshall EP, McIsaac GF, Parton WJ, Tonitto C, Youssef MA (2009) Modeling denitrification in a tile-drained, corn and soybean agroecosystem of Illinois, USA. Biogeochemistry 93:7–30

    Article  CAS  Google Scholar 

  • Davidson EA, Matson PA, Vitousek PM, Riley R, Dunkin K, Garcia-Mendez G, Maass JM (1993) Process regulating soil emissions of NO and N2O in a seasonally dry tropical forest. Ecology 74:130–139

    Article  CAS  Google Scholar 

  • Delgado MJ, Casella S, Bedmar EJ (2007) Denitrification in rhizobia-legume symbiosis. In: Bothe H, Ferguson SJ, Newton WE (eds) Biology of the nitrogen cycle. Elsevier, Amsterdam, pp 84–92

    Google Scholar 

  • Demaneche S, Philippot L, David MM, Navarro E, Vogel TM, Simonet P (2009) Characterization of denitrification gene clusters of soil bacteria via a metagenomic approach. Appl Environ Microbiol 75:534–537

    Article  PubMed  CAS  Google Scholar 

  • Fernández LA, Perotti EB, Sagardoy MA, Gómez MA (2008) Denitrification activity of Bradyrhizobium sp. isolated from argentine soybean cultivated soils. World J Microbiol Biotechnol 24:2577–2585

    Article  Google Scholar 

  • Groffman PM (1985) Nitrification and denitrification in conventional and notillage soils. Soil Sci Soc Am J 49:329–334

    Article  CAS  Google Scholar 

  • Hernandez-Ramirez G, Brouder SM, Smith DR, Van Scoyoc GE (2009) Greenhouse gas fluxes in an Eastern corn belt soil: weather, nitrogen source, and rotation. J Environ Qual 38:841–854

    Article  PubMed  CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change (2001) The third assessment report. “Climate Change 2001”. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Jones CM, Stres B, Rosenquist M, Hallin S (2008) Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification. Mol Biol Evol 25:1955–1966

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, Iriguchi M, Kawashima K, Kohara M, Matsumoto M, Shimpo S, Tsuruoka H, Wada T, Yamada M, Tabata S (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9:189–197

    Article  PubMed  Google Scholar 

  • Kuenen JG, Roberson LA (1987) In: Cole JA, Ferguson S (eds) The nitrogen and sulfur cycles. Cambridge University Press, UK, pp 162–218

    Google Scholar 

  • Kumon Y, Sasaki Y, Kato I, Takaya N, Shoun H, Beppu T (2002) Codenitrification and denitrification are dual metabolic pathways through which dinitrogen evolves from nitrate in Streptomyces antibioticus. J Bacteriol 184:2963–2968

    Article  PubMed  CAS  Google Scholar 

  • Laughlin RJ, Stevens RJ (2002) Evidence for fungal dominance of denitrification and codenitrification in a grassland soil. Soil Sci Soc Am J 66:1540–1548

    Article  CAS  Google Scholar 

  • Mahmood T, Malik KA, Shamsi SRA, Sajjad MI (1998) Denitrification and total N losses from an irrigated sandy-clay loam under maize-wheat crop** system. Plant Soil 199:239–250

    Article  CAS  Google Scholar 

  • Mahne I, Tiedje JM (1995) Criteria and methodology for identifying respiratory denitrifiers. Appl Environ Microbiol 61:1110–1115

    PubMed  CAS  Google Scholar 

  • Martínez Toledo MV (1992) Biología del Nitrógeno. In: López JG, Lluch C (eds) Interacción Planta-Microorganismo: Biología del Nitrógeno. Editorial Rueda, Alcorcón, Madrid, Spain. ISBN: 84-7207-065-4

    Google Scholar 

  • Miller AJ, Cramer MD (2004) Root nitrogen acquisition and assimilation. Plant Soil 274:1–36

    Article  Google Scholar 

  • Moreno VC, Cabello P, Martínez-Luque M, Blasco R, Castillo F (1999) Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. J Bacteriol 181:6573–6584

    Google Scholar 

  • Mulder A, van de Graaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol 16:177–183

    Article  CAS  Google Scholar 

  • Munch JCH, Velthof GL (2007) Denitrification and agriculture. In: Bothe H, Ferguson SJ, Newton WE (eds) Biology of the nitrogen cycle. Elsevier, Amsterdam, pp 331–341

    Chapter  Google Scholar 

  • Newton WE (2007) Physiology, biochemistry, and molecular biology of nitrogen fixation. In: Bothe H, Ferguson SJ, Newton WE (eds) Biology of the nitrogen cycle. Elsevier, Amsterdam, pp 109–127

    Chapter  Google Scholar 

  • O’Hara GW, Daniel RM (1985) Rhizobial denitrifiation: a review. Soil Biol Biochem 17:1–9

    Article  Google Scholar 

  • Philippot L (2002) Denitrifying genes in bacterial and archaeal genomes. Biochim Biophys Acta 1577:355–376

    Article  PubMed  CAS  Google Scholar 

  • Philippot L, Germon JC (2005) Contribution of bacteria to initial input and cycling of nitrogen in soils. In: Varma A, Buscot F (eds) Microorganisms in soils: roles in genesis and functions. Springer, Berlin, pp 159–176

    Chapter  Google Scholar 

  • Poth M, Focth DD (1985) 15N kinetic analysis of N2O production by Nitrosomonas europea: an examination of nitrifier denitrification. Appl Environ Microbiol 49:1134–1141

    PubMed  CAS  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Sameshima-Saito R, Chiba K, Minamisawa K (2004) New method of denitrification analysis of Bradyrhizobium field isolates by gas chromatographic determination of 15N-labeled N2. Appl Environ Microbiol 70:2886–2891

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry: an analysis of global change, 2nd edn. Academic, San Diego, CA

    Google Scholar 

  • Shoun H, Kima D-H, Uchiyamab H, Sugiyamac J (1992) Denitrification by fungi. FEMS Microbiol Lett 94:277–281

    Article  CAS  Google Scholar 

  • Smith GB, Smith MS (1986) Symbiotic and free-living denitrification by Brady japonicum. Soil Sci Soc Am J 50:349–354

    Article  CAS  Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, Oma Rice C, Scholes B, Sirotenko O (2007) Agriculture. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. pp. 499–532

    Google Scholar 

  • Strous M, Fuerst JA, Kramer EHM, Logemann S, Muyzer G, Vam de Pas-Schoonen KT, Webb R, Kuenen JG, Jetten MSM (1999) Missing lithotrophic identified as a new planctomycete. Nature 400:446–449

    Article  PubMed  CAS  Google Scholar 

  • Tiedje JM (1988) Dissimilatory nitrate-reducing bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 179–243

    Google Scholar 

  • Tiedje JM (1994) Denitrifiers. In: Klute A (ed) Methods of soil analysis, part 2: microbiological and biochemical properties, 2nd edn. SSSA, Madison, pp 245–265

    Google Scholar 

  • Trimmer M, Nicholls JC, Deflandre B (2003) Anaerobic ammonium oxidation measured in sediments along the Thames estuary, United Kingdom. Appl Environ Microbiol 69:6447–6454

    Article  PubMed  CAS  Google Scholar 

  • van Berkum P, Keyser H (1985) Anaerobic growth and denitrification among different serogroups of soybean rhizobia. Appl Environ Microbiol 49:772–777

    PubMed  Google Scholar 

  • van Spanning RJM, Richardson DJ, Ferguson SJ (2007) Introduction to the biochemistry and molecular biology of denitrification. In: Bothe H, Ferguson SJ, Newton WE (eds) Biology of the nitrogen cycle. Elsevier, Amsterdam, pp 4–20

    Google Scholar 

  • **ng G, Zhao X, **ong Z, Yan X, Xu H, **e Y, Shi S (2009) Nitrous oxide emission from paddy fields in China. Acta Ecol Sin 29:45–50

    Article  Google Scholar 

  • Yang S-S, Lai C, Chang H, Chang E, Wei C (2009) Estimation of methane and nitrous oxide emissions from paddy fields in Taiwan. Renew Energ 34:1916–1922

    Article  CAS  Google Scholar 

  • Ye RW, Averill BA, Tiedje JM (1994) Denitrification: production and consumption of nitric oxide. Appl Environ Microbiol 60:1053–1058

    PubMed  CAS  Google Scholar 

  • Zhong Z, Lemke RL, Nelson LM (2009) Nitrous oxide emissions associated with nitrogen fixation by grain legumes. Soil Biol Biochem 41:2283–2291

    Article  CAS  Google Scholar 

  • Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 4:533–616

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leticia A. Fernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fernández, L.A., Bedmar, E.J., Sagardoy, M.A., Delgado, M.J., Gómez, M.A. (2011). Denitrification Activity in Soils for Sustainable Agriculture. In: Maheshwari, D. (eds) Bacteria in Agrobiology: Plant Nutrient Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21061-7_14

Download citation

Publish with us

Policies and ethics

Navigation