Natural Time Analysis of Seismicity

  • Chapter
  • First Online:
Natural Time Analysis: The New View of Time

Part of the book series: Springer Praxis Books ((GEOPHYS))

  • 1078 Accesses

Abstract

Assuming that a mainshock may be considered as a new phase, the natural time analysis of the seismicity reveals that the normalized power spectrum Π(φ) for small φ (φ → 0) or the quantity K1(= _χ2_–_χ_2) may be considered as an order parameter for seismicity. The probability distribution P(K1) of this order parameter is obtained from the calculation of the variance K1 when a time window of length l (= number of consecutive events) is sliding through an earthquake catalog. The K1 value at which this probability distribution P(K1) maximizes is designated by K1,p. By using P(K1), we find: first, studying the order parameter fluctuations relative to the standard deviation of its distribution, we observe that (a) the scaled distributions of different seismic areas (as well as that of the worldwide seismicity) fall on a universal curve and (b) this curve exhibits an “exponential tail” similar to that observed in certain non-equilibrium systems (e.g. 3D turbulent flow) as well as in several equilibrium critical phenomena, e.g., 2D Ising, 3D Ising, 2D XY. Second, the constant b in the Gutenberg–Richter (G-R) law for EQs, N(=M) = 10a-bM, is determined from the Maximum Entropy Principle which leads to b ≈ 1 in accordance with the b value obtained from real seismic data. Third, by analyzing either the original earthquake catalog or a shuffled one the following results are obtained for the Southern California Earthquake Catalog (SCEC) as well as for the Japanese Meteorological Agency Earthquake Catalog (Japan). Concerning the K1,p values, we find K1,p = 0.066 for the original data, while K1,p = 0.064 for the randomly shuffled data (with possible uncertainty of ±0.001). Both these K1,p values, the difference of which is shown to be associated with temporal correlations between the EQ magnitudes M, differ markedly from the value ? u = 1/12(≈ 0.083) of the “uniform” distribution, which is interpreted as reflecting that the process’s increments’ infinite variance contributes significantly to self-similarity. Fourth, upon employing multifractal cascades (generalized Cantor sets) in natural time an interconnection between K1,p and the parameter b of the G-R law is obtained which for b ≈ 1 leads to K1,p = 0.064 that coincides with the K1,p value obtained from the (randomly) shuffled earthquake data of Japan and SCEC. Fifth, by applying DFA to the earthquake magnitude time series of the SCEC and Japan data, we confirm that temporal correlations exist between EQ magnitudes. Sixth, focusing on the order parameter fluctuations of seismicity before and after mainshocks, we find the following. The P(K1) versus K1 plot before mainshocks exhibits a significant bimodal feature which is reminiscent of the bimodal feature observed in the pdf of the order parameter when approaching (from below) Tc in equilibrium critical phenomena. Finally, the G-R law or its generalization in the frame of the nonextensive statistical mechanics, if combined with natural time, which captures the temporal correlations between EQ magnitudes, can reproduce the features of real seismic data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, S.: Essential discreteness in generalized thermostatistics with non-logarithmic entropy. EPL 90, 50004 (2010)

    Article  Google Scholar 

  2. Abe, S.: Reply to the Comment by B. Andresen. EPL 92, 40006 (2010)

    Article  Google Scholar 

  3. Abe, S., Bagci, G.B.: Necessity of q -expectation value in nonextensive statistical mechanics. Phys. Rev. E 71, 016139 (2005)

    Article  Google Scholar 

  4. Abe, S., Okamoto, Y. (eds.): Non Extensive Statistical Mechanics and its Applications. Springer, Berlin (2001)

    Google Scholar 

  5. Abe, S., Suzuki, N.: Itineration of the internet over nonequilibrium stationary states in Tsallis statistics. Phys. Rev. E 67, 016106 (2003)

    Article  Google Scholar 

  6. Abe, S., Suzuki, N.: Law for the distance between successive earthquakes. J. Geophys. Res. 108(B2), 2113 (2003)

    Google Scholar 

  7. Abe, S., Suzuki, N.: Aging and scaling of earthquake aftershocks. Physica A 332, 533–538 (2004)

    Article  Google Scholar 

  8. Abe, S., Suzuki, N.: Scale-free statistics of time interval between successive earthquakes. Physica A 350, 588–596 (2005)

    Article  Google Scholar 

  9. Andresen, B.: Comment on “Essential discreteness in generalized thermostatistics with nonlogarithmic entropy” by Abe Sumiyoshi EPL 92, 40005 (2010)

    Google Scholar 

  10. Ausloos, M., Lambiotte, R.: Brownian particle having a fluctuating mass. Phys. Rev. E 73, 011105 (2006)

    Article  Google Scholar 

  11. Bak, P., Christensen, K., Danon, L., Scanlon, T.: Unified scaling law for earthquakes. Phys. Rev. Lett. 88, 178501 (2002)

    Article  Google Scholar 

  12. Balankin, A.S.: Dynamic scaling approach to study time series fluctuations. Phys. Rev. E 76, 056120 (2007)

    Article  Google Scholar 

  13. Balankin, A.S., Morales Matamoros, D., Pati˜no Ortiz, J., Pati˜no Ortiz, M., Pineda Le´on, E., Samayoa Ocha, D.: Scaling dynamics of seismic activity fluctuations. EPL 85, 39001 (2009)

    Google Scholar 

  14. Barnett, R.M., et al.: Review of particle physics. Phys. Rev. D 54, 1–708 (1996)

    Article  Google Scholar 

  15. B˚ath, M.: Lateral inhomogeneities of the upper mantle. Tectonophysics 2, 483–514 (1965)

    Google Scholar 

  16. Beck, C., Schl¨ogl, F.: Thermodynamics of Chaotic Systems: An Introduction. Cambridge University Press, Cambridge, U.K. (1993)

    Google Scholar 

  17. Bramwell, S.T., Christensen, K., Fortin, J.Y., Holdsworth, P.C.W., Jensen, H.J., Lise, S., L´opez, J.M., Nicodemi, M., Pinton, J.F., Sellitto, M.: Universal fluctuations in correlated systems. Phys. Rev. Lett. 84, 3744–3747 (2000)

    Google Scholar 

  18. Bramwell, S.T., Christensen, K., Fortin, J.Y., Holdsworth, P.C.W., Jensen, H.J., Lise, S., L´opez, J.M., Nicodemi, M., Pinton, J.F., Sellitto, M.: Bramwell et al. reply. Phys. Rev. Lett. 87, 188902 (2001)

    Google Scholar 

  19. Bramwell, S.T., Christensen, K., Fortin, J.Y., Holdsworth, P.C.W., Jensen, H.J., Lise, S., L´opez, J.M., Nicodemi, M., Pinton, J.F., Sellitto, M.: Bramwell et al. reply. Phys. Rev. Lett. 89, 208902 (2002)

    Google Scholar 

  20. Bramwell, S.T., Fortin, J.Y., Holdsworth, P.C.W., Peysson, S., Pinton, J.F., Portelli, B., Sellitto, M.: Magnetic fluctuations in the classical XY model: The origin of an exponential tail in a complex system. Phys. Rev. E 63, 041106 (2001)

    Article  Google Scholar 

  21. Bramwell, S.T., Holdsworth, P.C.W., Pinton, J.F.: Universality of rare fluctuations in turbulence and critical phenomena. Nature 396, 552–554 (1998)

    Article  Google Scholar 

  22. Buchel, A., Sethna, J.P.: Statistical mechanics of cracks: Fluctuations, breakdown, and asymptotics of elastic theory. Phys. Rev. E 55, 7669–7690 (1997)

    Article  Google Scholar 

  23. Carlson, J.M., Langer, J.S., Shaw, B.E.: Dynamics of earthquake faults. Rev. Mod. Phys. 66, 657–670 (1994)

    Article  Google Scholar 

  24. Chen, H., Sun, X., Chen, H.,Wu1, Z.,Wang, B.: Some problems in multifractal spectrum computation using a statistical method. New J. Phys. 6, 84 (2004)

    Google Scholar 

  25. Clusel, M., Fortin, J.Y., Holdsworth, P.C.W.: Criterion for universality-class-independent critical fluctuations: Example of the two-dimensional Ising model. Phys. Rev. E 70, 046112 (2004)

    Article  Google Scholar 

  26. Darooneh, A.H., Mehri, A.: A nonextensive modification of the Gutenberg-Richter law: q-stretched exponential form. Physica A 389, 509–526 (2010)

    Article  Google Scholar 

  27. Davy, P., Sornette, A., Sornette, D.: Some consequences of a proposed fractal nature of continental faulting. Nature 348, 56–59 (1990)

    Article  Google Scholar 

  28. Eichner, J.F., Kantelhardt, J.W., Bunde, A., Havlin, S.: Statistics of return intervals in long-term correlated records. Phys. Rev. E 75, 011128 (2007)

    Article  Google Scholar 

  29. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27, 861–874 (2006)

    Article  Google Scholar 

  30. Garbaczewski, R.: Differential entropy and time. Entropy 7, 253–299 (2005)

    Google Scholar 

  31. Garber, A., Hallerberg, S., Kantz, H.: Predicting extreme avalanches in self-organized critical sandpiles. Phys. Rev. E 80, 026124 (2009)

    Article  Google Scholar 

  32. Gluzman, S., Sornette, D.: Self-consistent theory of rupture by progressive diffuse damage. Phys. Rev. E 63, 066129 (2001)

    Article  Google Scholar 

  33. Gutenberg, B., Richter, C.F.: Seismicity of the Earth and Associated Phenomena. Princeton Univ. Press, Princeton, New York (1954)

    Google Scholar 

  34. Hanks, T.C., Kanamori, H.: Moment magnitude scale. J. Geophys. Res. 84(B5), 2348–2350 (1979)

    Google Scholar 

  35. Holliday, J.R., Rundle, J.B., Turcotte, D.L., Klein,W., Tiampo, K.F., Donnellan, A.: Space-time clustering and correlations of major earthquakes. Phys. Rev. Lett. 97, 238501 (2006)

    Article  Google Scholar 

  36. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620–630 (1957)

    Article  Google Scholar 

  37. Jaynes, E.T.: Probability Theory: The Logic of Science. Cambridge University Press, New York (2003)

    Book  Google Scholar 

  38. Kagan, Y.Y.: Short-term properties of earthquake catalogs and models of earthquake source. Bull. Seismol. Soc. Am. 94, 1207–1228 (2004)

    Article  Google Scholar 

  39. Kanamori, H.: Quantification of earthquakes. Nature 271, 411–414 (1978)

    Google Scholar 

  40. Keilis-Borok, V.I., Kossobokov, V.G.: Premonitory activation of earthquake flow: algorithm M8. Phys. Earth Planet. Inter. 61, 73–83 (1990)

    Article  Google Scholar 

  41. Keilis-Borok, V.I., Rotwain, I.M.: Diagnosis of time of increased probability of strong earthquakes in different regions of the world: algorithm CN. Phys. Earth Planet. Inter. 61, 57–72 (1990)

    Article  Google Scholar 

  42. Kun, F., Herrmann, H.J.: Transition from damage to fragmentation in collision of solids. Phys. Rev. E 59, 2623–2632 (1999)

    Article  Google Scholar 

  43. Lennartz, S., Bunde, A., Turcotte, D.L.: Missing data in aftershock sequences: Explaining the deviations from scaling laws. Phys. Rev. E 78, 041115 (2008) Uncorrected Proof

    Google Scholar 

  44. 288

    Google Scholar 

  45. Lennartz, S., Livina, V.N., Bunde, A., Havlin, S.: Long-term memory in earthquakes and the distribution of interoccurrence times. EPL 81, 69001 (2008)

    Article  Google Scholar 

  46. Lippiello, E., de Arcangelis, L., Godano, C.: Influence of time and space correlations on earthquake magnitude. Phys. Rev. Lett. 100, 038501 (2008)

    Article  Google Scholar 

  47. Lippiello, E., Godano, C., de Arcangelis, L.: Dynamical scaling in branching models for seismicity. Phys. Rev. Lett. 98, 098501 (2007)

    Article  Google Scholar 

  48. Meneveau, C., Sreenivasan, K.R.: Simple multifractal cascade model for fully developed turbulence. Phys. Rev. Lett. 59, 1424–1427 (1987)

    Article  Google Scholar 

  49. Miguel, M.C., Zapperi, S.: Fluctuations in plasticity at the microscale. Science 312, 1151–1152 (2006)

    Article  Google Scholar 

  50. O’Neil, J., Meneveau, C.: Spatial correlations in turbulence: Predictions from the multifractal formalism and comparison with experiments. Phys. Fluids A 5, 158–172 (1993)

    Article  Google Scholar 

  51. Papanastassiou, D., Latoussakis, J., Stavrakakis, G.: A revised catalogue of earthquakes in the broader area of Greece for the period 1950–2000. Bulletin of the Geological Society of Greece 34, 1563–1566 (2001)

    Google Scholar 

  52. Pastor-Satorras, R.: Multifractal properties of power-law time sequences: Application to rice piles. Phys. Rev. E 56, 5284–5294 (1997)

    Article  Google Scholar 

  53. Roumelioti, Z., Kiratzi, A., Theodoulidis, N., Papaioannou, C.: S-wave spectral analysis of the 1995 Kozani-Grevena (NW Greece) aftershock sequence. Journal of Seismology 6, 219–236 (2002)

    Article  Google Scholar 

  54. Rundle, J.B., Turcotte, D.L., Shcherbakov, R., Klein, W., Sammis, C.: Statistical physics approach to understanding the multiscale dynamics of earthquake fault systems. Rev. Geophys. 41, 1019 (2003)

    Article  Google Scholar 

  55. Saichev, A., Sornette, D.: Power law distributions of seismic rates. Tectonophysics 431, 7–13 (2007)

    Article  Google Scholar 

  56. Sarlis, N.V., Skordas, E.S., Varotsos, P.A.: See (the freely available) EPAPS Document No. EPLEEE8- 80–014908 originally from N.V. Sarlis, E.S. Skordas and P.A. Varotsos, Phys. Rev. E 80, 022102 (2009). For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.

  57. Sarlis, N.V., Skordas, E.S., Varotsos, P.A.: Multiplicative cascades and seismicity in natural time. Phys. Rev. E 80, 022102 (2009)

    Article  Google Scholar 

  58. Sarlis, N.V., Skordas, E.S., Varotsos, P.A.: Nonextensivity and natural time: The case of seismicity. Phys. Rev. E 82, 021110 (2010)

    Article  Google Scholar 

  59. Sarlis, N.V., Skordas, E.S., Varotsos, P.A.: Order parameter fluctuations of seismicity in natural time before and after mainshocks. EPL 91, 59001 (2010)

    Article  Google Scholar 

  60. Schultka, N., Manousakis, E.: Finite-size scaling in two-dimensional superfluids. Phys. Rev. B 49, 12,071–12,077 (1994)

    Google Scholar 

  61. Sethna, J.P.: Order parameters, broken symmetry, and topology. In: L. Nagel, D. Stein (eds.) 1991 Lectures in Complex Systems, Santa Fe Institute Studies in the Sciences of Complexity, Proc. Vol. XV. Addison-Wesley, New York (1992)

    Google Scholar 

  62. Shcherbakov, R., Turcotte, D.L., Rundle, J.B.: A generalized Omori’s law for earthquake aftershock decay. Geophys. Res. Lett. 31, L11613 (2004)

    Article  Google Scholar 

  63. Shore, J.E., Johnson, R.W.: Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Trans. Inf. Theory IT-26, 26–37 (1980)

    Google Scholar 

  64. Shore, J.E., Johnson, R.W.: Properties of cross-entropy minimization. IEEE Trans. Inf. Theory IT-27, 472–482 (1981)

    Google Scholar 

  65. Shore, J.E., Johnson, R.W.: Comments on and correction to ‘axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy’ (Jan 80 26–37) (corresp.). IEEE Trans. Inf. Theory IT-29, 942–943 (1983)

    Google Scholar 

  66. Silva, R., Franc¸a, G.S., Vilar, C.S., Alcaniz, J.S.: Nonextensive models for earthquakes. Phys. Rev. E 73, 026102 (2006)

    Google Scholar 

  67. Sornette, D.: Critical Phenomena in Natural Science, 2nd edn. Springer, Berlin (2004)

    Google Scholar 

  68. Sornette, D., Davy, P.: Fault growth model and the universal fault length distribution. Geophys. Res. Lett. 18, 1079–1082 (1991)

    Article  Google Scholar 

  69. Sotolongo-Costa, O., Posadas, A.: Fragment-asperity interaction model for earthquakes. Phys. Rev. Lett. 92, 048501 (2004)

    Article  Google Scholar 

  70. See the document SCSN/README.old included in SCSN catalogs.tar.gz available at http://www.data.scec.org/ftp/catalogs/SCSN/

  71. Uncorrected

    Google Scholar 

  72. Telesca, L.: Nonextensive analysis of seismic sequences. Physica A 389, 1911–1914 (2010)

    Article  Google Scholar 

  73. Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52, 479–487 (1988)

    Article  Google Scholar 

  74. Tsallis, C.: Introduction to Nonextensive Statistical Mechanics. Springer, Berlin (2009)

    Google Scholar 

  75. Tsallis, C., Mendes, R.S., Plastino, A.R.: The role of constraints within generalized nonextensive statistics. Physica A 261, 534–554 (1998)

    Article  Google Scholar 

  76. Turcotte, D.L.: Fractals and Chaos in Geology and Geophysics, 2nd edn. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  77. Turcotte, D.L., Malamud, B.D., Guzzetti, F., Reichenbach, P.: Self-organization, the cascade model, and natural hazards. Proc. Natl. Acad. Sci. USA 99, 2530–2537 (2002)

    Article  Google Scholar 

  78. Utsu, T.: A statistical study of the occurrence of aftershocks. Geophys. Mag. 30, 521 (1961)

    Google Scholar 

  79. Utsu, T.: Seismology. Kyoritsu (in Japanese), Tokyo (2001)

    Google Scholar 

  80. Varotsos, P.A., Sarlis, N.V., Skordas, E.S.: Spatio-temporal complexity aspects on the interrelation between seismic electric signals and seismicity. Practica of Athens Academy 76, 294–321 (2001)

    Google Scholar 

  81. Varotsos, P.A., Sarlis, N.V., Skordas, E.S.: Seismic Electric Signals and seismicity: On a tentative interrelation between their spectral content. Acta Geophys. Pol. 50, 337–354 (2002)

    Google Scholar 

  82. Varotsos, P.A., Sarlis, N.V., Skordas, E.S., Lazaridou, M.S.: Entropy in natural time domain. Phys. Rev. E 70, 011106 (2004)

    Article  Google Scholar 

  83. Varotsos, P.A., Sarlis, N.V., Skordas, E.S., Tanaka, H.K., Lazaridou, M.S.: Attempt to distinguish long-range temporal correlations from the statistics of the increments by natural time analysis. Phys. Rev. E 74, 021123 (2006)

    Article  Google Scholar 

  84. Varotsos, P.A., Sarlis, N.V., Skordas, E.S., Tanaka, H.K., Lazaridou, M.S.: Entropy of seismic electric signals: Analysis in the natural time under time reversal. Phys. Rev. E 73, 031114 (2006)

    Article  Google Scholar 

  85. Varotsos, P.A., Sarlis, N.V., Tanaka, H.K., Skordas, E.S.: See (the freely available) EPAPS Document No. E-PLEEE8-72-058510 originally from P.A. Varotsos, N.V. Sarlis, H.K. Tanaka and E.S. Skordas, Phys. Rev. E 72, 041103 (2005). For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.

  86. Varotsos, P.A., Sarlis, N.V., Tanaka, H.K., Skordas, E.S.: Similarity of fluctuations in correlated systems: The case of seismicity. Phys. Rev. E 72, 041103 (2005)

    Article  Google Scholar 

  87. Varotsos, P.A., Sarlis, N.V., Skordas, E.S., Tanaka, H.K.: A plausible explanation of the b-value in the Gutenberg-Richter law from first principles. Proc. Japan Acad., Ser. B 80, 429–434 (2004)

    Google Scholar 

  88. Vilar, C.S., Franc¸a, G.S., Silva, R., Alcaniz, J.S.: Nonextensivity in geological faults? Physica A 377, 285–290 (2007)

    Google Scholar 

  89. Watkins, N.W., Chapman, S.C., Rowlands, G.: Comment on “universal fluctuations in correlated systems”. Phys. Rev. Lett. 89, 208901 (2002)

    Article  Google Scholar 

  90. Woodard, R., Newman, D.E., S´anchez, R., Carreras, B.A.: Persistent dynamic correlations in selforganized critical systems away from their critical point. Physica A 373, 215–230 (2007)

    Google Scholar 

  91. Zapperi, S., Ray, P., Stanley, H.E., Vespignani, A.: First-order transition in the breakdown of disordered media. Phys. Rev. Lett. 78, 1408–1411 (1997)

    Article  Google Scholar 

  92. Zheng, B.: Generic features of fluctuations in critical systems. Phys. Rev. E 67, 026114 (2003)

    Article  Google Scholar 

  93. Zheng, B., Trimper, S.: Comment on “universal fluctuations in correlated systems”. Phys. Rev. Lett. 87, 188901 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Varotsos, P.A., Sarlis, N.V., Skordas, E.S. (2011). Natural Time Analysis of Seismicity. In: Natural Time Analysis: The New View of Time. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16449-1_6

Download citation

Publish with us

Policies and ethics

Navigation