Strong Sub- and Super-Gaussianity

  • Conference paper
Latent Variable Analysis and Signal Separation (LVA/ICA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6365))

Abstract

We introduce the terms strong sub- and super-Gaussianity to refer to the previously introduced class of densities log-concave is x 2 and log-convex in x 2 respectively. We derive relationships among the various definitions of sub- and super-Gaussianity, and show that strong sub- and super-Gaussianity are related to the score function being star-shaped upward or downward with respect to the origin. We illustrate the definitions and results by extending a theorem of Benveniste, Goursat, and Ruget on uniqueness of separating local optima in ICA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 103.99
Price includes VAT (Spain)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amari, S.-I., Chen, T.-P., Cichocki, A.: Stability analysis of learning algorithms for blind source separation. Neural Networks 10(8), 1345–1351 (1997)

    Article  Google Scholar 

  2. Andrews, D.F., Mallows, C.L.: Scale mixtures of normal distributions. J. Roy. Statist. Soc. Ser. B 36, 99–102 (1974)

    MATH  MathSciNet  Google Scholar 

  3. Benveniste, A., Goursat, M., Ruget, G.: Robust identification of a nonminimum phase system. IEEE Transactions on Automatic Control 25(3), 385–399 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  4. Benveniste, A., Métivier, M., Priouret, P.: Adaptive algorithms and stochastic approximations. Springer, Heidelberg (1990)

    MATH  Google Scholar 

  5. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  6. Bruckner, A.M., Ostrow, E.: Some function classes related to the class of convex functions. Pacific J. Math. 12(4), 1203–1215 (1962)

    MATH  MathSciNet  Google Scholar 

  7. Cardoso, J.-F., Laheld, B.H.: Equivariant adaptive source separation. IEEE. Trans. Sig. Proc. 44(12), 3017–3030 (1996)

    Article  Google Scholar 

  8. Comon, P., Jutten, C. (eds.): Handbook of Blind Source Separation: Independent Component Analysis and Applications. Elsevier, Amsterdam (2010)

    Google Scholar 

  9. Finucan, H.M.: A note on kurtosis. Journal of the Royal Statistical Society, Series B (Methodological) 26(1), 111–112 (1964)

    MATH  MathSciNet  Google Scholar 

  10. Haykin, S.: Neural Networks: a comprehensive foundation. Prentice-Hall, Englewood Cliffs (1999)

    MATH  Google Scholar 

  11. Karlin, S., Novikoff, A.: Generalized convex inequalities. Pacific J. Math. 13, 1251–1279 (1963)

    MATH  MathSciNet  Google Scholar 

  12. Keilson, J., Steutel, F.W.: Mixtures of distributions, moment inequalities, and measures of exponentiality and Normality. The Annals of Probability 2, 112–130 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mansour, A., Jutten, C.: What should we say about the kurtosis? IEEE Signal Processing Letters 6(12), 321–322 (1999)

    Article  Google Scholar 

  14. Palmer, J.A., Kreutz-Delgado, K., Wipf, D.P., Rao, B.D.: Variational EM algorithms for non-gaussian latent variable models. In: Advances in Neural Information Processing Systems. MIT Press, Cambridge (2006)

    Google Scholar 

  15. Rao, B.D., Engan, K., Cotter, S.F., Palmer, J., Kreutz-Delgado, K.: Subset selection in noise based on diversity measure minimization. IEEE Trans. Signal Processing 51(3) (2003)

    Google Scholar 

  16. Widder, D.V.: The Laplace Transform. Princeton University Press, Princeton (1946)

    Google Scholar 

  17. Williamson, R.: Multiply monotone functions and their Laplace transforms. Duke Math. J. 23, 189–207 (1956)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Palmer, J.A., Kreutz-Delgado, K., Makeig, S. (2010). Strong Sub- and Super-Gaussianity. In: Vigneron, V., Zarzoso, V., Moreau, E., Gribonval, R., Vincent, E. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2010. Lecture Notes in Computer Science, vol 6365. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15995-4_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15995-4_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15994-7

  • Online ISBN: 978-3-642-15995-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation