Anthropogenic and Biomass Pyrometamorphism

  • Chapter
  • First Online:
Pyrometamorphism
  • 877 Accesses

Abstract

Examples of anthropogenic pyrometamorphism are numerous and often closely analogous to natural pyrometamorphic processes and products. In this chapter, products and conditions of anthropogenic and biomass pyrometamorphism are described and include: bricks and ceramics derived from a variety of compositions; fused rocks associated with burning spoil heaps, in situ gasification; slags produced from non-metallic blast furnaces, iron ore smelting, surface burning, drilling and artificial fulgurites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arceo HB, Glasser FP (1995) Fluxing reactions of sulfates and carbonates in cement clinkering II. The system CaCO3-K2CO3. Cement Concr Res 25: 339–344

    Article  Google Scholar 

  • Bauluz B, Mayayo MJ, Yuste A, Fernandez-Nieto C, Gonzalez Lopez JM (2004) TEM study of mineral transformations in fired carbonated clays: relevance to brick making. Clays Miner 39: 333–344

    Article  Google Scholar 

  • Bowen NL, Aurousseau M (1923) Fusion of sedimentary rocks in drill-holes. Bull Geol Soc Am 34: 431–448

    Google Scholar 

  • Brindley GW, Maroney DM (1960) High temperature reactions of clay mineral mixtures and their ceramic properties, II. J Am Ceram Soc 43: 511–516

    Article  Google Scholar 

  • Butler BCM (1977) Al-rich pyroxene and melilite in a blast-furnace slag and a comparison with the Allende meteorite. Mineral Mag 41: 493–499

    Article  Google Scholar 

  • Butterworth J (1979) Chemical analyses of archaeological depsoits from the Thatswane Hills, Botswana. S Afr J Sci 75: 408–409

    Google Scholar 

  • Capitanio F, Larocca F, Improta S (2004) High temperature rapid pyrometamorphism induced by a charcoal pit burning: the case of Ricetto, central Italy. Int J Earth Sci (Geol Rundsch) 93: 107–118

    Article  Google Scholar 

  • Catanzariti G, McIntosh G, Soares AMM, Díaz-Martínez E, Kresten P, Osete ML (2008) Archeomagnetic dating of a vitrified wall at the Late Bronze Age settlement of Misericordia (Serpa, Portugal). J Archaeol Sci 35: 1399–1407

    Article  Google Scholar 

  • Chakrabarti AK (1969) On the effects of igneous intrusion on a few coal seams of the Jharia coal field, Bihar, India. Econ Geol 64: 319–324

    Article  Google Scholar 

  • Chesnokov BV, Tsherbakova EP (1991) The mineralogy of burned coal heaps in the Chelyabinsk coal basin. Publ H Nauka, Moscow (in Russian)

    Google Scholar 

  • Chinchón JS, Querol X, Fernández-Turiel JL, López-Soler A (1991) Environmental inpact of mineral transformations undergone during coal combustion. Environ Geol Water Sci 18: 11–15

    Article  Google Scholar 

  • Clocchiatti R (1990) Les fulgurites et roches vitrifiées de l’Etna. Eur J Mineral 2: 479–494

    Google Scholar 

  • Cole WF, Segnit ER (1963) High-temperature phases developed in some kaolinite-mica-quartz clays. Trans Brit Ceram Soc 62: 375–395

    Google Scholar 

  • Coombs DS, Beck RJ, Adams CJ, Bannister JM, Paterson LA, Roser BP (2008) Paralava produced by combustion of dead gorse near Colac Bay, Southland, New Zealand. J Geol 116: 94–101

    Article  Google Scholar 

  • Cultrone G, Rodriguez-Navarro C, Sebastian E, Cazalla O, De La Torre MJ (2001) Carbonate and silicate reactions during ceramic firing. Eur J Mineral 13: 621–634

    Article  Google Scholar 

  • Davis GL, Tuttle OF (1952) Two new crystalline phases of the anorthite composition, CaO·Al2O3·2SiO2. Am J Sci 250: 107

    Google Scholar 

  • Denbow J, Smith J, Ndobochani NM, Atwood K, Miller D (2008) Archaeological excavations at Bosutswe, Botswana: cultural chronology, paleo-ecology and economy. J Archaeol Sci 35: 459–480

    Article  Google Scholar 

  • Diaz-Martínez E (2004) Origin of the vesicular glass of El Gasco (Cáceres, Spain): vitrification of a protohistoric human construction. Geotemas (Madrid) 6: 33–36

    Google Scholar 

  • Diaz-Martínez E, Ormö J (2003) An alternative hypothesis for the origin of ferroan ringwoodite in the pumice of El Gasco (Cáceres, Spain). Lunar Planet Sci 34: 1318

    Google Scholar 

  • Dokoupilova P, Sracek O, Losos Z (2007) Geochemical behavior and mineralogical transformations during spontaneous combustion of a coal waste pile in Oslavany, Czech Republic. Mineral Mag 71: 443–460

    Article  Google Scholar 

  • Dondi M, Ercolani G, Farbri B, Marsigli M (1998) An approach to the chemistry of pyroxenes formed during the firing of Ca-rich silicate ceramics. Clay Mineral 33: 443–452

    Article  Google Scholar 

  • Dutcher RR, Campbell DL, Thornton CP (1966) Coal metamorphism and igneous intrusions in Colorado. Am Chem Soc Adv Chem Ser 65: 708–723

    Article  Google Scholar 

  • Englis DT, Day WM (1929) The composition of peculiar clinkers found in snags after forest fires. Science 69: 605–606

    Article  Google Scholar 

  • Feenstra A, Sämann S, Wunder B (2005) An experimental study of Fe-Al solubility in the system corundum-hematite up to 40 kbar and 1300°C. J Petrol 46: 1881–1892

    Article  Google Scholar 

  • Finkelman RB, Bostick NH, Dulong FT, Senftle FE, Thorp AN (1998) Influence of an igneous intrusion on the inorganic geochemistry of a bituminous coal from Pitkin County, Colorado. Int J Coal Geol 36: 223–241

    Article  Google Scholar 

  • Folk RL, Hoops GK (1982) Iron-age layer of glass made from plants at Tel Yin’am, Israel. J Field Archaeol 9: 455–466

    Google Scholar 

  • Ghose TK (1967) A study of temperature conditions at igneous contacts with certain Permain coals of India. Econ Geol 62: 109–117

    Article  Google Scholar 

  • Gray VR (1987) Prediction of ash fusion temperature from ash composition for some New Zealand coals. Fuel 66: 1230–1239

    Article  Google Scholar 

  • Huffman GP, Huggins FE, Dunmyre GR (1981) Investigation of the high-temperature behavior of coal ash in reducing and oxidizing atmospheres. Fuel 60: 585–597

    Article  Google Scholar 

  • Humphreys GS, Hunt PA, Buchanan R (1987) Wood-ash stone near Sydney, N.S.W.: a carbonate pedological feature in an acidic soil. Aust J Soil Res 25: 115–124

    Article  Google Scholar 

  • Johnson VH, Gray RJ, Schapiro N (1963) Effect of igneous intrusives on the chemical, physical, and optical properties of Somerset coal. Am Chem Soc Div Fuel Chem 7: 110–124

    Google Scholar 

  • Kienholz R (1929) On the occureence of rock-like clinkers in burning snags. J Forest 27: 527–531

    Google Scholar 

  • Kresten P, Kero L, Chyssler J (1993) Geology of the vitrified hill-fort Broborg in Uppland, Sweden. Geol Fören Stockholm Förhand 115: 13–24

    Article  Google Scholar 

  • Kühnel RA, Scarlett B (1987) Criteria for recognition of thermal conditions during the underground gasification: experience from WIDCO field test in Centralia, USA. In: Proceedings of 13th UCG Symposium Laramie WY USA, USDOE/METC-88/6095, 60–71

    Google Scholar 

  • Kühnel RA, Schmit CR, Eylands KE, McCarthy GJ (1993) Comparison of the pyrometamorphism of clayey rocks during underground coal gasification and firing of structural ceramics. App Clay Sci 8: 129–146

    Article  Google Scholar 

  • Lolja SA, Haxhi H, Dhimitri R, Drushku S, Malja A (2002) Correlation between ash fusion temperatures and chemical compositon of Albanian coal ashes. Fuel 81: 2257–2261

    Article  Google Scholar 

  • McCarthy GJ, Stevenson RJ, Oliver RL (1989) Mineralogy of the residues from an underground coal gasification test. In: fly ash and coal conversion by-products: characterization, utilization and disposal V. Mater Res Soc Symp Proc 136: 113–130

    Article  Google Scholar 

  • McFarlane GC (1929) Igneous metamorphism of coal. Econ Geol 24: 1–14

    Article  Google Scholar 

  • Melenevsky VN, Fomin AN, Konyshev AS, Talibova OG (2008) Contact coal transformation inder the influence of dolerite dike (Kaierkan deposit, Noril’sk district). Russian Geol Geophys 49: 667–672

    Article  Google Scholar 

  • Melluso L, Conticelli S, D’Antonio M, Mirco NP, Saccani E (2003) Petrology and mineralogy of wollastonite-and melilite-bearing paralavas from the Central Appenines, Italy. Am Mineral 88: 1287–1299

    Google Scholar 

  • Melluso L, Conticelli S, D’Antonio M, Mirco NP, Saccani E (2005) Reply to Capitamio 2005. Mineralogic and bulk composition of Italian wollsatonite and melilite-bearing paralava and clinker: Further evidence of their pyrometamorphic nature. Am Mineral 90: 1940–1944

    Article  Google Scholar 

  • Milton C (1944) Stones from trees. Sci Mon 59: 421–423

    Google Scholar 

  • Milton C, Axelrod J (1947) Fused wood-ash stones: fairchildite (n.sp.) K2CO3, CaCO3, buetschliite (n.sp.) 3 K2CO3, 2CaCO3, 6H2O and calcite CaCO3, their essential components. Am Mineral 32: 607–624

    Google Scholar 

  • Mitchell RS, Gluskoter HJ (1976) Mineralogy of ash of some American coals: variations with temperature and source. Fule 55: 90–96

    Article  Google Scholar 

  • Moranville-Regourd M (1998) Cements made from blast furnace slag. In: Hewlett PC (ed) Lea’s chemistry of cement and concrete 4th edn, pp 637–678

    Google Scholar 

  • Morey GW, Kracek FC, Bowen NL (1930) The ternary system K2O-CaO-SiO2. J Soc Glass Technol 14: 149–187

    Google Scholar 

  • Mrose ME, Rose HJ, Marinenko JW (1966) Synthesis and properties of fairchildite and buetschliite: their relation to wood-ash stone formation. Proc Geol Soc Am, San Francisco 146: 146, Abstract

    Google Scholar 

  • Müller G, Schuster AK, Zippert Y (1988) Spinifex textures and texture zoning in fayalite-rich slags of medieval iron-works near Schieder Village, NW-Germany. N Jb Mineral Mh H 3: 111–129

    Google Scholar 

  • Nag D, Singh AK, Banerjee PK (2009) Metallurgical use of heat altered coal: a case study. J Mineral Mat Charact Engin 8: 541–549

    Google Scholar 

  • Nankervis JC, Furlong RB (1980) Phase changes in mineral matter of North Dakota lignites caiuse by heating to 1200°C. Fuel 59: 425–430

    Article  Google Scholar 

  • Osborn EF, Muan A (1960) Phase diagrams of oxide systems. American Ceramic Society, Columbus, OH

    Google Scholar 

  • Owen JV, Culhane P (2005) Pyrometamorphism of 19th-century kiln artifacts from Caledonia Springs, Ontario, Canada. Geoarchaeology 20: 777–796

    Article  Google Scholar 

  • O’Gorman JV, Walker PL Jr (1973) Thermal behavior of mineral fractions separated from selected American coals. Fuel 52: 71–79

    Article  Google Scholar 

  • Pareek HS (1965) Petrological characteristics of Barakar coal seams, metamorphosed by lamprophyre sill in the Jharia coalfield, Bihar. Proc Plant Sci 63: 261–270

    Google Scholar 

  • Pederson AK, Nygaard E, Rønsbo JG, Bender Koch C, Buchwald VF (1992) Drilling induced pyrometamorphism of clastic sediments in the Lavø-1 well, Denmark. Sci Drill 3: 127–137

    Google Scholar 

  • Peter B (2001) Vitrified dung in archaeological contexts: an experimental stidy on the process of its formation in the Mosu and Bobira areas. Pula Botswana J Afr Studies 15: 125–143

    Google Scholar 

  • Peters Tj, Iberg R (1978) Mineralogical changes during firing of calcium-silicate brick clays. Am Ceram Soc Bull 57: 503–505

    Google Scholar 

  • Peters Tj, Jenni JP (1973) Mineralogical study of the firing characteristics of brick clays. Beitr Geol Schweiz Geotechn Ser 50

    Google Scholar 

  • Phemister J (1942) Note on fused spent shale from a retort at Pumpherston, Midlothian. Trans Geol Soc Glasgow 20: 238–247

    Google Scholar 

  • Podwysocki MH, Dutcher RR (1971) Coal dykes that intrude lamprophyre sills: Pargatoire River Valley, Colorado. Econ Geol 66: 267–280

    Article  Google Scholar 

  • Querol X, Izquierdo M, Monfort E, Alvarez E, Font O, Moreno T, Alastuey A, Zhuang X, Lu W, Wang Y (2008) Environmental characterization of burnt coal gangue banks at Yangquan, Shanxi Province, China. Int J Coal Geol 75: 93–104

    Article  Google Scholar 

  • Raeside JD (1968) A note on artificial fulgurites from a soil in south-east Otago. NZ J Geol Geophys 11: 72–76

    Google Scholar 

  • Rull F, Martinez-Frias J, Rodríguez-Losada JA (2006) Micro-Raman spectroscopic study of El Gasco pumice, western Spain. J Raman Spectrosc 38: 239–244

    Article  Google Scholar 

  • Schairer JF, Yagi K (1952) The system FeO-Al2O3-SiO2. Am J Sci Bowen 471–512

    Google Scholar 

  • Scott PW, Critchley SR, Wilkinson FCF (1986) The chemistry and mineralogy of some granulated and pelletized blast furnace slags. Mineral Mag 50: 141–147

    Article  Google Scholar 

  • Seryotkin YV, Sokol EV, Bakakin VV, Likhacheva AY (2008) Pyrometamorphic osumilite: occurrence, paragenesis, and crystal structure as compared to cordierite. Eu J Mineral 20: 191–198

    Article  Google Scholar 

  • Sharygin VV, Sokol EV, Nigmatulina EN, Lepezin GG, Kalugin VM, Frenkel AE (1999) Mineralogy and petrography of technogenic parabasalts from the Chelyabinsk brown-coal basin. Russ Geol Geophys 40: 879–899

    Google Scholar 

  • Smith A (2003) BCR: Optimizing firing through TTT analysis. Ceramicindustry 01/01/2002

    Google Scholar 

  • Snyman CP, Barclay J (1989) The coalification of South African coal. Int J Coal Geol 13: 375–390

    Article  Google Scholar 

  • Sokol EV, Nigmatulina EN, Volkova NI (2002a) Fluorine mineralisation from burning coal-heaps in the Russian Urals. Mineral Petrol 75: 23–40

    Article  Google Scholar 

  • Sokol E, Sharygin V, Kalugin V, Volkova N, Nigmatulina E (2002b) Fayalite and kirschsteinite solid solutions in melts from burned spoil-heaps, south Urals, Russia. Eur J Mineral 14: 795–807

    Article  Google Scholar 

  • Sokol EV, Volkova NI, Lepezin GG (1998) Mineralogy of pyrometamorphic rocks associated with naturally burned coal-bearing spoil-heaps of the Chelyabinsk coal basin, Russia. Eur J Mineral 10: 1003–1014

    Google Scholar 

  • Stoppa F, Rosatelli G, Cundari A, Castorina F, Woolley AR (2005) Comment on Melluso et al. (2003). Reported data and interpretation of some wollastonite- and melilite-bearing rocks from the Central Appennines of Italy. Am Mineral 90: 1919–1925

    Article  Google Scholar 

  • Thy P, Jenkins BM, Lesher CE (1999) High-temperature melting behavior of urban wood-fuel ash. Energy Fuels 13: 830–850

    Article  Google Scholar 

  • Thy P, Jenkins BM, Lesher CE, Grundvig S (2006) Compositional constraints on slag formation and potassium volatilization from rice straw blended wood fuel. Fuel Process Tech 87: 383–408

    Article  Google Scholar 

  • Thy P, Segobye AK, Ming DW (1995) Implications of prehistoric glassy biomass slag from east-central Botswana. J Archaeol Sci 22: 629–637

    Article  Google Scholar 

  • Traber D, Mäder Urs K, Eggenberger U (2002) Petrology and geochemistry of a municipal solid waste incinerator residue treated at high temperature. Schweiz Mineral Petrogr Mitt 82: 1–14

    Google Scholar 

  • Trindale MJ, Dias MI, Coroado J, Rocha F (2009) Mineralogical transformations of calcareous-rich clays with firing: A comparative study between calcite and dolomite rich clays from Algarve, Portugal. Appl Clay Sci 42: 345–355

    Article  Google Scholar 

  • Tropper P, Recheis A, Konzett J (2004) Pyrometamorphic formation of phosphorous-rich olivines in partially molten metapelitic gneisses from a prehistoric sacrificial burning site (Ötz Valley, Tyrol, Austria). Eur J Mineral 16: 631–640

    Article  Google Scholar 

  • Vassilev SV, Kitano K, Takeda S, Tsurue T (1995) Influence of mineral and chemical composition of coal ashes and their fusibility. Fuel Process Techn 45: 27–51

    Article  Google Scholar 

  • Vassilev SV, Vassileva CG (1997) Geochemistry of coals, coal ashes and combustion wastes from coal-fired power stations. Fuel Process Techn 51: 19–45

    Article  Google Scholar 

  • Vassileva CG, Vassilev SV (2006) Behaviour of inorganic matter during heating of Bulgarian coals. 2. Subbituminous and bituminous coals. Fuel Process Tech 87: 1095–1116

    Article  Google Scholar 

  • Ward CR, Warbrooke PR, Roberts FI (1989) Geochemical and mineralogical changes in a coal seam due to contact metamorphism, Sydney Basin, New South Wales, Australia. Int J Coal Geol 11: 105–125

    Article  Google Scholar 

  • Wyllie PJ, Tuttle OF (1961) Hydrothermal melting of shales. Geol Mag 98: 56–66

    Article  Google Scholar 

  • Zateeva SN, Sokol EV, Sharygin VV (2007) Specificity of pyrometamorphic minerals of the ellestadite group. Geol Ore Deposits 49: 792–805

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodney Grapes .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grapes, R. (2010). Anthropogenic and Biomass Pyrometamorphism. In: Pyrometamorphism. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15588-8_6

Download citation

Publish with us

Policies and ethics

Navigation